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Abstract— Internet advertising is a relatively new area where
feedback control has become critically important for scal-
able optimization. But using feedback control in this space
is challenging due to nonlinear, time-varying, and uncertain
plants. In this paper we propose a high-fidelity model reference
adaptive controller for reference tracking of budget-constrained
advertisement campaigns.

I. INTRODUCTION

Advertising, which is a US$600 billion industry [1],
has for online applications in recent years come to rely
heavily on feedback control. Each advertiser wish to spend
an advertisement budget in such a way that their specific
branding and/or performance objective is optimized. Coop-
eration is not permitted and the advertisers compete over ad
impressions (opportunities to show advertisement to Internet
users). In short, each advertiser wish to serve ads to those
Internet users that generate the highest return on investment.

The allocation of ad impressions is handled in impression
exchanges where any advertiser may submit bids for any
opportunity to show an ad, but where only the highest
bidder is awarded the impression. The optimization problem
turns into a problem of estimating the return on investment
of each impression opportunity. Given the extremely large
number of Internet users browsing Internet every day and
the large number of advertisers, it is an extraordinarily high-
dimensional problem. In addition to the scale, also time-
varying and stochastic traffic patterns and user-behavior add
complexity to the optimization problem.

Feedback control has played a critical role in solving
the above type of optimization problems for more than ten
years. See e.g. [2] for an early but high-level overview.
The first comprehensive description of control problems in
online advertising, presented from a feedback control per-
spective, was published in [3]. Because of time-variabilities
and nonlinearities it is not surprising that adaptive control is
considered, and [4] presents an adaptive controller involving
bid randomization. Adaptive estimation in online advertise-
ment is also promising, which was demonstrated in [5], and
in the forthcoming paper we propose a model reference
adaptive control (MRAC) scheme (e.g. [6], [7], [8]) for
reference tracking of budget-constrained advertisement cam-
paigns. The effectiveness of the proposed adaptive controller
is validated by a high-fidelity advertisement model developed
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in [3] and [9]. The experiment study on AOL advertising
optimization platform–AdLearnTM is in progress.

The paper is organized as follows. We formally define
the problem in Section II. In Section III we normalize and
linearize the plant model. This allows us in Section IV
to design an adaptive controller. We demonstrate the con-
trol performance on simulated ad campaigns in Section V.
Finally, in Section VI we wrap up the paper with some
concluding remarks and ideas of future work.

II. PROBLEM STATEMENT

For ad campaigns competing with other bidders on the
Internet, we implement an optimal bidding strategy [3]
manipulated by a campaign-level signal up to optimize return
on investment for the ad campaign with budget constraint. To
ensure ad campaign cost tracks a given budget, a feedback
control design is needed for the campaign-level signal up.
Based on the advertising system analysis in [3], we may
model the relationship between the signal up and the ad
campaign cost c as a discrete-time model:

c(tT ) = f(up((t− 1)T ))hseas(tT )e
ε(tT ), (1)

for t = 0, 1, 2, . . . and T being a fixed sampling period,
where f(up(tT )) is nonlinear and unknown, hseas(tT ) > 0
is periodic, and ε(tT ) denotes the noise. Note, the cost c(tT )
represents the spend of the advertiser within the time interval
[(t− 1)T, tT ) and the signal up((t− 1)T ) remains constant
in the time interval [(t− 1)T, tT ). Due to system latency in
reporting the cost, we are unable to obtain the cost c(tT )
at time tT , while we may only obtain a cost measurement
defined as uploaded cost cuploaded(tT ) at time tT :

cuploaded(tT ) =
d

∑

m=0

αmc((t−m)T ), (2)

where d represents maximum delay in reporting cost, and
αm ≥ 0, m = 0, . . . , d, are unknown coefficients satisfying

d
∑

m=0

αm = 1. (3)

In this paper, we develop an adaptive control scheme for
the campaign-level signal up to handle the nonlinearities
and uncertainties of the campaign cost plant to make the
ad campaign cost track a desired budget reference.

III. LINEARIZED SYSTEM MODEL

Before proceeding the control design for up, in this section
we investigate the characteristics of the uploaded cost plant
(2) to establish a model for control.
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Normalized uploaded cost model. An off-line study us-
ing experimental advertising data has been conducted in [10]
to generate a periodic function ĥseas(tT ) > 0 to estimate
the function hseas(tT ) in the cost model (1). Dividing the
estimated periodic function ĥseas(tT ) calibrated in [10] on
both sides of the uploaded cost model (2) and defining a
normalized uploaded cost c̄uploaded(tT ):

c̄uploaded(tT ) =
cuploaded(tT )

ĥseas(tT )
, (4)

we have the normalized uploaded cost model as

c̄uploaded(tT ) =

d
∑

m=0

ᾱm(tT )
c((t−m)T )

hseas((t−m)T )
, (5)

where

ᾱm(tT ) =
αmhseas((t−m)T )

ĥseas(tT )
, (6)

for m = 0, . . . , d. In view of the cost model (1), we can
further express the normalized uploaded cost model (5) as

c̄uploaded(tT ) =

d
∑

m=0

ᾱm(tT )f(up((t−m− 1)T )). (7)

Denoting c̄uploaded(tT ) as y(tT ):

y(tT ) , c̄uploaded(tT ), (8)

we can obtain a state space representation for the normalized
uploaded cost model (7):



















x1((t+ 1)T ) = x2(tT ),
x2((t+ 1)T ) = x3(tT ),
...
xd+1((t+ 1)T ) = f(up(tT ))e

ε((t+1)T ),

y(tT ) = ᾱd(tT )x1(tT ) + ᾱd−1(tT )x2(tT ) + · · ·

+ · · ·+ ᾱ0(tT )xd+1(tT ). (9)

Linear time-invariant normalized uploaded cost model.
For AOL advertising optimization platform AdLearnTM, the
period of hseas(tT ) is 24-hours, the sampling period is T =
0.25 hour, and the maximum delay in reporting cost is d =
1. So, if the estimate ĥseas(tT ) is accurate, the parameter
ᾱm(tT ) can be approximated as ᾱm(tT ) ≈ αm, which is
a constant, for m = 0, 1. Without loss of generality, in this
control design, we assume the parameter ᾱm(tT ) in (9) is a
constant; i.e., ᾱm(tT ) = ᾱm, with ᾱm being some unknown
constant, for m = 0, . . . , d. Moreover, around an operating
point up0, the nonlinear function f(up) is approximated as

f(up) ≈ bpup + fp0, (10)

where

bp =
∂f(up)

∂up

∣

∣

∣

∣

up0

, (11)

fp0 = f(up0)−
∂f(up)

∂up

∣

∣

∣

∣

up0

up0. (12)

Note, the parameter bp and the dynamics offset fp0 in (10)
are unknown due to the uncertainties of f(up(t)). From (10),
the assumption that ᾱm is constant for m = 0, . . . , d, and
ignoring the noise term, we use the following linear time-
invariant model to approximate the normalized uploaded cost
model (9) around the operating point up0:

x(t + 1) = Ax(t) +Bup(t) + f0,

y(t) = Cx(t), (13)

where x(t) = [x1(t), x2(t), . . . , xd+1(t)]
T is the state vector

signal, and the system parameters A, B, C, and the dynamics
offset f0, are

A =















0 1 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 1
0 0 · · · 0















∈ R(d+1)×(d+1),

B =















0
0
...
0
bp















∈ Rd+1, f0 =













0
0
0
0
fp0













∈ Rd+1,

C = [ᾱd, ᾱd−1, . . . , ᾱ1, ᾱ0] ∈ R1×(d+1). (14)

Then, the input-output representation of the linear model (13)
can be expressed as

y(t) = G0(z)[up](t) +Gd(z)[us](t), (15)

where us(t) is a unit step signal; i.e., us(t) = 1, for t =
0, 1, . . ., and the transfer functions are

G0(z) =
ᾱ0bpz

d + ᾱ1bpz
d−1 + · · ·+ ᾱdbp

zd+1
, (16)

Gd(z) =
ᾱ0fp0z

d + ᾱ1fp0z
d−1 + · · ·+ ᾱdfp0

zd+1
. (17)

Control objective. Since the state signal x(t) is unavail-
able for measurement, and only the output signal y(t); i.e.,
the normalized uploaded cost c̄uploaded(t) defined in (4), is
measurable, we employ an output feedback MRAC design to
compensate for the uncertainties of B and C and the effect of
the unknown dynamics offset f0 on the output signal y(t),
and make all closed-loop system signals bounded and the
output signal y(t) track a reference signal

ym(t) = Wm(z)[r](t), (18)

where r(t) is a bounded reference input and

Wm(z) =
1

z
, (19)

for the linear time-invariant model (13). Then we implement
the adaptive control scheme to the original ad campaign cost
plant (2) to evaluate the effectiveness of the linearization-
based control design.

Assumptions. To proceed the MRAC design, we assume
(A1) all zeros of G0(z) are stable; (A2) an upper bound
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d̄ of the maximum delay d is known; (A3) high-frequency
gain ᾱ0bp 6= 0 and the sign of ᾱ0bp is known. The
assumption (A1) is needed for stable plant-model matching,
the assumptions (A2) and (A3) are used for designing
controller structure and adaptive laws. Note, we verify that
the assumptions can hold true for the ad campaign cost plant
in the simulation study.

IV. ADAPTIVE CONTROL DESIGN

In this section, we develop an adaptive control algorithm
for the linear time-invariant model (13) and discuss possible
robustness modifications when implementing to the nonlinear
uploaded cost model (2).

A. Model Reference Adaptive Control Scheme

The feedback control signal up(t) is chosen as

up(t) = θT1 (t)ω1(t) + θ2(t)r(t) + θ3(t), (20)

where ω1(t) = a(z)
Λ(z) [up](t), with Λ(z) = zd̄ and a(z) =

[zd̄−1, . . . , z, 1]T ∈ Rd̄, and θ1(t), θ2(t), and θ3(t) are
estimates of nominal parameters θ∗1 , θ∗2 , and θ∗3 . In particular,
θ3(t) is for compensation of the effect of the unknown
dynamics offset f0 of (13). The existence of the nominal
parameters θ∗1 , θ∗2 , and θ∗3 are ensured by the following plant-
model matching property.

Proposition 4.1: There exist θ∗1 , θ∗2 , and θ∗3 , such that,
when θ1(t) = θ∗1 , θ2(t) = θ∗2 , and θ3(t) = θ∗3 , the control
signal up(t) in (20) ensures signal boundedness and output
tracking limt→∞(y(t)− ym(t)) = 0 for the system (13).

Proof: It can be shown that there exist θ∗1 =
[θ∗11, θ

∗
12, . . . , θ

∗
1d̄
]T and θ∗2 = 1

ᾱ0bp
, where

θ∗11 = −
ᾱ1

ᾱ0
, θ∗12 = −

ᾱ2

ᾱ0
, . . . , θ∗1d = −

ᾱd

ᾱ0
, (21)

θ∗1d+1 = 0, . . . , θ∗1d̄ = 0, (22)

such that the matching equation

1− θ∗T1
a(z)

Λ(z)
= θ∗2W

−1
m (z)G0(z) (23)

holds true. Operating both sides of (23) on up(t), we have

up(t)− θ∗1ω1(t) = θ∗2W
−1
m (z) [y −Gd(z)[us]] (t). (24)

Substituting the nominal control signal up(t) = θ∗1ω1(t) +
θ∗2r(t) + θ∗3 in (24) and from (23), we obtain the tracking
error e(t) = y(t)− ym(t) as

e(t)=ᾱ0bpWm(z)

[(

1−θ∗T1
a(z)

Λ(z)

)

G−1
0 Gd[us]+θ∗3

]

(t). (25)

Based on final value theorem, (21) and (22), we have

lim
t→∞

(

1−θ∗T1
a(z)

Λ(z)

)

G−1
0 Gd(z)[us](t)=

∑d

m=0 ᾱmfp0

ᾱ0bp
.

In view of (25), and choosing θ∗3 = −
∑d

m=0
ᾱmfp0

ᾱ0bp
, it follows

that limt→∞ e(t) = 0 exponentially. ∇

Since the nominal controller parameters θ∗1 , θ∗2 , and θ∗3 are
unknown, we need to employ the adaptive controller (20),
where the controller parameters θ1(t), θ2(t), and θ3(t) are
updated by adaptive laws developed as follows.

Tracking error equation. Operating both sides of the
matching equation (23) on up(t) and substituting the adaptive
controller (20), we obtain the tracking error as

e(t) = ᾱ0bpWm(z)[θ̃Tω](t) + fp(t), (26)

where θ̃(t) = θ(t) − θ∗, θ(t) = [θT1 (t), θ2(t), θ3(t)]
T , θ∗ =

[θ∗T1 , θ∗2 , θ
∗
3 ]

T , ω = [ωT
1 , r, us]

T , and

fp(t), ᾱ0bpWm(z)

[(

1−θT∗
1

a(z)

Λ(z)

)

G−1
0 Gd[us]+θ∗3

]

(t).

Note, with the nominal parameters θ∗1 , θ∗2 , and θ∗3 , fp(t)
decays to 0 exponentially as shown in Proposition 4.1.

Estimation error. We introduce an estimation error ǫ(t):

ǫ(t) = e(t) + ρ(t)ξ(t), (27)

where ρ(t) is the estimate of ρ∗ , ᾱ0bp and

ξ(t) = θT (t)ζ(t) −Wm(z)[θTω](t), (28)

ζ(t) = Wm(z)[ω](t). (29)

Substituting the tracking error e(t) (26) in (27), and ignoring
the decaying term fp(t), we obtain

ǫ(t) = ρ∗θ̃T (t)ζ(t) + ρ̃(t)ξ(t), (30)

where ρ̃(t) = ρ(t)− ρ∗.

Adaptive laws. Based on the estimation error model (30),
we choose adaptive laws for the parameters θ(t) and ρ(t) as

θ(t+ 1) = θ(t)−
sign(ᾱ0bp)Γζ(t)ǫ(t)

m2(t)
, (31)

ρ(t+ 1) = ρ(t)−
γξ(t)ǫ(t)

m2(t)
, (32)

where the error signal ǫ(t) is computed from (27), the
adaptation gains satisfy 0 < Γ = ΓT < 2

|ᾱ0bp|
Id̄+2 with Id̄+2

being a (d̄ + 2) × (d̄ + 2) identity matrix and 0 < γ < 2,
and the normalization signal m(t) is

m(t) =
√

1 + ζT (t)ζ(t) + ξ2(t). (33)

Stability property. Introduce a positive definite function

V (θ̃, ρ̃) = |ρ∗|θ̃TΓ−1θ̃ + γ−1ρ̃2. (34)

The time increment of V (θ̃, ρ̃), along (31) and (32), is

V (θ̃(t+ 1), ρ̃(t+ 1))− V (θ̃(t), ρ̃(t))

= −

(

2−
ᾱ0bpζ

T (t)Γζ(t) + γξ2(t)

m2(t)

)

ǫ2(t)

m2(t)
. (35)

From the conditions that 0 < Γ = ΓT < 2
|ᾱ0bp|

Id̄+2 and
0 < γ < 2, we obtain

V (θ̃(t+ 1), ρ̃(t+ 1))− V (θ̃(t), ρ̃(t)) ≤ −β1
ǫ2(t)

m2(t)
, (36)

5484



for some constant β1 > 0, which implies that θ(t) ∈ L∞,
ρ(t) ∈ L∞, ǫ(t)

m(t) ∈ L2∩L∞, θ(t+1)−θ(t) ∈ L2∩L∞, and
ρ(t+1)−ρ(t) ∈ L2∩L∞. Based on the above properties, we
can show that the controller (20) with the parameters updated
by the adaptive laws (31) and (32) can guarantee the closed-
loop system signal boundedness and asymptotic output signal
tracking; i.e., limt→∞(y(t)− ym(t)) = 0 asymptotically, for
the model (13). The proof can be carried out by using a
similar way as described in [8].

B. Robustness Modification for Adaptive Laws

When implementing the linearization-based adaptive con-
trol scheme to the nonlinear ad campaign cost plant, model-
ing errors caused by linearization, parameter variation, and
system noise may have impacts on the closed-loop system
stability and signal tracking performance. To handle the
system modeling errors, we employ a parameter projection
modification for the adaptive laws (31) and (32).

Parameter projection. We choose

θ(t) = θtemp(t) + fθ(t), (37)

ρ(t) = ρtemp(t) + fρ(t), (38)

where θtemp(t) , [θtemp11, . . . , θtemp1d̄, θtemp2, θtemp3]
T

and ρtemp(t) are updated by (31) and (32), and fθ(t) ,

[fθ11(t), . . . , fθ1d̄(t), fθ2(t), fθ3(t)]
T and fρ(t) are the pro-

jection terms. For the projection design, we assume that
the nominal controller parameter θ∗j belongs to a known
interval θ∗j ∈ [θaj , θ

b
j ], for j = 11, 12, . . . , 1d̄, 2, 3, and

the nominal parameter ρ∗ belongs to a known interval
ρ∗ ∈ [ρa, ρb]. We choose a diagonal design matrix Γ =
diag{γ11, γ12, . . . , γ1d̄, γ2, γ3} for (31), and select the ini-
tial estimate of θj(t) as θj(0) ∈ [θaj , θ

b
j ], for j =

11, 12, . . . , 1d̄, 2, 3, and the initial estimate of ρ(t) as ρ(0) ∈
[ρa, ρb]. We set projection components fθj(t) and fρ(t) as

fθj(t)=







0, if θtempj(t) ∈ [θaj , θ
b
j ],

θbj − θtempj(t), if θtempj(t) > θbj ,

θaj − θtempj(t), if θtempj(t) < θaj ,

(39)

for j = 11, 12, . . . , 1d̄, 2, 3, and

fρ(t) =







0, if ρtemp(t) ∈ [ρa, ρb],
ρb − ρtemp(t), if ρtemp(t) > ρb,

ρa − ρtemp(t), if ρtemp(t) < ρa.

(40)

It can be shown that θ(t)− θ(t− 1) ∈ L2, and ρ(t)− ρ(t−
1) ∈ L2 [8]. Hence, the closed-loop system stability and the
asymptotic output tracking can be guaranteed for the model
(13). Note, if there exist certain types of modeling errors, the
parameter projection scheme may ensure the system stability
and the small output tracking error in the mean sense [8].

Since the linearization-based design may only be effective
around a small neighbourhood of the operating point, we may
need to limit the increment or decrement of the control signal
up(t) based on the parameter projection scheme (37)–(38).
For the controller parameter θ3(t), which is a component of

θ(t) updated by (37), we choose an interval [θa3 (t), θ
b
3(t)] as

θa3 (t) = up(t−1)−∆a(t)−θT1 (t)ω1(t)−θ2(t)r(t), (41)

θb3(t) = up(t−1)+∆b(t)−θT1 (t)ω1(t)−θ2(t)r(t), (42)

where ∆b(t) > 0 and ∆a(t) > 0 are design parameters
representing the maximum increment and decrement of the
control signal for each step. Applying the parameter projec-
tion scheme (37) for θ3(t) with

fθ3(t)=







0, if θtemp3(t) ∈ [θa3(t), θ
b
3(t)],

θb3(t)−θtemp3(t), if θtemp3(t) > θb3(t),
θa3(t)−θtemp3(t), if θtemp3(t) < θa3(t).

It follows that

up(t)=θT (t)ω(t)∈ [up(t−1)−∆
a(t), up(t−1)+∆

b(t)], (43)

which may enhance the effectiveness of the linearization-
based design around a small neighborhood of the operating
point. Note, only if the interval [θa3 (t), θ

b
3(t)] defined in

(41) and (42) satisfies θ∗3 ∈ [θa3 (t), θ
b
3(t)], the projection

modification may make the closed-loop system stable. It
needs further investigation to choose proper θ3(0), ∆a(t)
and ∆b(t) to ensure the condition holds true.

C. Gain Schedule Design Based on Parameter Estimation

Recall that there is an important design condition 0 <

Γ = ΓT < 2
|ᾱ0bp|

Id̄+2 for the controller parameter adaptive
laws (31). So the knowledge of the high frequency gain
ᾱ0bp of the transfer function G0(z) (16) is crucial for the
control design. In this subsection, we implement an adaptive
parameter estimation algorithm [8] to estimate the system
parameters, in particular the high frequency gain ᾱ0bp.

From (16), (17), and the assumption (A2), we can param-
eterize the model (15) as

y(t) = θ∗Tp φ(t), (44)

where

θ∗p=[ᾱ0bp, ᾱ1bp, . . . , ᾱdbp, 0, . . . , 0,

ᾱ0fp0, ᾱ1fp0, . . . , ᾱdfp0, 0, . . . , 0]
T
, (45)

φ(t)=
[

z−1[up](t), . . . , z
−d[up](t), . . . , z

−d̄−1[up](t),

z−1[us](t), . . . , z
−d[us](t), . . . , z

−d̄−1[us](t)
]T

.(46)

To estimate the unknown parameter vector θ∗p in (44), we
introduce a parametric error ǫp(t):

ǫp(t) = θTp (t)φ(t) − y(t) = θ̃Tp φ(t), (47)

where θp(t) is the estimate of θ∗p and θ̃p = θp − θ∗p . The
adaptive law for the vector θp(t) is chosen as

θp(t+ 1) = θp(t)−
Γpφ(t)ǫp(t)

m2
p(t)

, (48)

where 0<Γp=ΓT
p <2I2(d̄+1) and mp =

√

1 + φTφ.
Since the design parameter Γ of the adaptive law (31)

needs to be chosen as 0 < Γ = ΓT < 2
|ᾱ0bp|

Id̄+2, we use
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the estimate θp1(t) of the plant high-frequency gain ᾱ0bp to
adjust the design parameter Γ for the controller.

With a parameter projection modification [8], we have
the plant high-frequency gain estimate θp1(t) ∈ [θap1, θ

b
p1].

Based on the assumption (A3) that ᾱ0bp 6= 0 and the sign
of ᾱ0bp is known, without loss of generality, we assume the
lower bound θap1 > 0, so that θp1(t) > 0. Then we choose
a diagnosis Γ for the adaptive law (31) and update it as
Γ(t) = γθ(t)Id̄+2, where

γθ(t) = (1− λθ)γθ(t− 1) + λθ

2

βp1θp1(t)
, (49)

for t = 0, 1, . . ., with γθ(0) > 0 being an arbitrary initial
gain, λθ ∈ [0, 1] being a design forgetting factor, and βp1 > 1
being a constant design parameter.

V. SIMULATION STUDY

In this section, we apply the adaptive controller with the
parameter projection and gain schedule modifications to a
high-fidelity ad cost model developed in [3] and [9] to assess
the effectiveness of the linearization-based design.

A. High-fidelity Ad Campaign Cost Model

For AOL advertising optimization platform AdLearnTM,
the controller sampling period is T = 0.25 hour, and the
delay in reporting the cost is 0.08 hour in the mean sense, it
follows that, for the uploaded cost model (2), the maximum
delay is d = 1 and α0 > α1 > 0 with α0 + α1 = 1, so we
express the uploaded cost model as

cuploaded(t) = α0c(t) + α1c(t− 1), (50)

where the cost c(t) is modeled as (1):

c(t) = f(up(t− 1))hseas(t)e
ε(t). (51)

Cost modeling in ad exchanges. The advertiser is charged
based on impressions awarded to the campaign. The cam-
paign is usually separated into multiple segments to target
desired users in ad exchanges. The impression allocation for
segment i is governed by a sealed 2nd price auction [11].
Based on the analysis in [3], denoting bi as the bid price for
segment i, b⋆i as the highest competing bid price, and ntot

I,i

as the available number of impressions, we may model the
cost f(up) in (51) as

f(up) =

n
∑

i=1

b⋆i I{upp̂i≥b⋆
i
}n

tot
I,i , (52)

where p̂i is an event rate estimate [5], for i = 1, 2, . . . , n.
In the simulation study, b⋆i , p̂i, and ntot

I,i , for i = 1, 2, . . . , n,
are generated based on the scheme developed in [9].

Time-of-day pattern estimation. Based on the study
conducted in [10], the periodic function hseas(t) in the model
(51) possesses a 24-hour period and can be estimated by the
following periodic function ĥseas(t):

ĥseas(t)=1+c1sin

(

2πT

24
t+φ1

)

+ c2sin

(

4πT

24
t+φ2

)

, (53)

with the sampling period T = 0.25 hour and the parameters
c1, φ1, c2, and φ2 calibrated by the off-line empirical study
in [10]. The noise in the model (51) may satisfy a normal
distribution

ǫ(t)
iid
∼ N(0, σ2), (54)

with σ calibrated by the empirical study in [10].

Normalized uploaded cost model. Hence, the normalized
uploaded cost model (9) used for control design is

{

x1(t+ 1) = x2(t),
x2(t+ 1) = f(up(t))e

ε(t+1),

y(t) = ᾱ1(t)x1(t) + ᾱ0(t)x2(tT ), (55)

with the output signal y(t) defined in (8):

y(t) =
cuploaded(t)

ĥseas(t)
, (56)

where f(up) is modeled as (52), the estimated periodic
function ĥseas(t) is chosen as (53), and the noise ǫ(t)
satisfies the normal distribution in (54).

Control design conditions. Before applying the
linearization-based adaptive control design, we need to
verify that the design conditions (A1)–(A3) can hold true.
Assuming that the estimate ĥseas(t) in (53) is accurate;
i.e., ĥseas(t) ≈ hseas(t), and from the definition of
ᾱm(t), m = 0, 1 in (6), it follows that ᾱ0(t) ≈ α0 and
ᾱ1(t) ≈ α1 for the normalized uploaded cost model (55).
For the assumption (A1), the zero of G0(z) (16) satisfies
that |z0| = ᾱ1

ᾱ0

≈ α1

α0

< 1 based on the property that
α0 > α1 > 0 with α0 + α1 = 1, which indicates that
the assumption (A1) holds true. For the assumption (A2),
we choose the upper bound of d as d̄ = 1. Based on the
system analysis in [3], the function f(up) is increasing with
respect to up for certain operating region, since b⋆i , ntot

I,i ,
p̂i ≥ 0 and I{upp̂i≥b⋆

i
} is a step function with positive step.

Hence, we have that bp > 0 in view of (11), which leads to
sign(ᾱ0bp) = 1 for the assumption (A3).

B. Adaptive Controller

Since the upper bound of the maximum delay is d̄ = 1,
in view of (20), the adaptive controller up(t) is chosen as

up(t) = θ1(t)ω1(t) + θ2(t)r(t) + θ3(t), (57)

where ω1(t) = 1
z
[up](t) and θ1(t), θ2(t), and θ3(t) are

updated by the adaptive laws (31) and (32) with the pa-
rameter projection and gain schedule modifications. For the
parameter projection modifications (37) and (38), we choose
the bounds for the parameters based on estimates of the
nominal controller parameters. In particular, for θa3 (t) in (41)
and θb3(t) in (42), we may choose ∆a(t) = γa|up(t−1)| and
∆b(t) = γb|up(t−1)| with some γa, γb ∈ (0, 1). For the gain
schedule modification in (49), the parameter estimate θp(t) is
updated by the adaptive law (48) with parameter projection.
Note, since the upper bound of the maximum delay is d̄ = 1,
the parameterized model (44) to be estimated is

y(t) = θ∗Tp φ(t), (58)
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with θ∗Tp = [ᾱ0bp, ᾱ1bp, ᾱ0fp0, ᾱ1fp0]
T and φ(t) =

[z−1[up](t), z
−2[up](t), z

−1[us](t), z
−2[us](t)]

T .

C. Simulation Result

In this simulation study, we simulate a normal scenario ob-
served in the optimization platform AdLearnTM, where the
campaign cost is simulated by the uploaded cost model (50),
with f(up) in (52) generated by the model developed in [9]
(including a scheme modeling abrupt increase and decrease
of available impressions), the noise ǫ(t)

iid
∼ N(0, 0.12), the

periodic function

hseas(t)=1+0.52 sin

(

2πT

24
t+2.34

)

+0.17 sin

(

4πT

24
t+0.46

)

,

and the latency coefficients α0 = 0.83 and α1 = 0.17.
For the adaptive controller (57), the estimated time-of-day

pattern periodic function is chosen as

ĥseas(t)=1+0.58 sin

(

2πT

24
t+2.5

)

+ 0.20 sin

(

4πT

24
t+0.50

)

,

which is a good approximation of Internet traffic in the
US, the parameter projection bounds for the controller pa-
rameters are chosen as θ1(t) ∈ [−5, 0], θ2(t) ∈ [0, 100],
and θ3(t) ∈ [θa3 (t), θ

b
3(t)] defined in (41) and (42) with

∆a(t) = 0.7|up(t − 1)| and ∆b(t) = 0.4|up(t − 1)|. Note,
ym(t) in (18) is the reference for y(t) defined in (56), which
indicates that the reference for the uploaded cost cuploaded(t)
is yuploadedm (t) = ym(t)ĥseas(t).

In the top plot of Figure 1, the blue line shows
yuploadedm (t), the green markers display cuploaded(t), and the
red markers show c(t). In the bottom plot of Figure 1, the
blue line shows up(t). Figure 2 shows the parameters θ1(t),
θ2(t), and θ3(t). From Figure 1 and Figure 2, we can see that
the adaptive controller can accommodate the large increase
of the available impressions happening between hour 5 and
29 and between hour 53 and 101, and can also compensate
for the large decrease of the available impressions happening
between hour 101 and 150.
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Fig. 1. Campaign cost measurements and control signal.
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Fig. 2. Controller parameters θ1(t), θ2(t), and θ3(t).

VI. CONCLUSIONS

The online ad impression allocation is handled in impres-
sion exchanges based on the 2nd price auction, so the ad
campaign cost model is a highly nonlinear and time-varying
plant with large uncertainties. In this paper, a linearization-
based MRAC scheme has been developed to deal with the
nonlinearities, uncertainties, and time-varying properties to
ensure cost tracking of a desired budget. The simulation val-
idation on a high-fidelity ad campaign cost model has verified
the effectiveness of the proposed adaptive control scheme.
The experiment validation on AOL advertising optimization
platform AdLearnTM is in progress. Further research of the
control of advertising systems may include designing a cost
volume forecasting algorithm to estimate the plant gain and
leveraging bid randomization to make the control designs
more efficient and robust to real-world auction networks.
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