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ABSTRACT
Contextual multi-armed bandit algorithms have received signifi-

cant attention in modeling users’ preferences for online personal-

ized recommender systems in a timely manner. While significant

progress has been made along this direction, a few major chal-

lenges have not been well addressed yet: (i) a vast majority of the

literature is based on linear models that cannot capture complex

non-linear inter-dependencies of user-item interactions; (ii) exist-

ing literature mainly ignores the latent relations among users and

non-recommended items: hence may not properly reflect users’

preferences in the real-world; (iii) current solutions are mainly

based on historical data and are prone to cold-start problems for

new users who have no interaction history.

To address the above challenges, we develop a Graph Regularized

Cross-modal (GRC) learning model, a general framework to exploit

transferable knowledge learned from user-item interactions as well

as the external features of users and items in online personalized

recommendations. In particular, the GRC framework leverage a non-

linearity of neural network to model complex inherent structure

of user-item interactions. We further augment GRC with the coop-

eration of the metric learning technique and a graph-constrained

embedding module, to map the units from different dimensions

(temporal, social and semantic) into the same latent space. An

extensive set of experiments are conducted on two benchmark

datasets as well as a large scale proprietary dataset from a major

search engine demonstrates the power of the proposed GRC model

in effectively capturing users’ dynamic preferences under different

settings by outperforming all baselines by a large margin.
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1 INTRODUCTION
Personalized recommender systems have been widely applied in

many real-world services such as e-commerce platforms, online

advertising, consumption of online content (e.g., books, music,

etc.) [13]. Effective personalized recommendations not only can

help customers identify items of interest more effectively, but can

also substantially increase the profit for the service providers [38].

To this end, there exists rich literature devoted to developing col-

laborative filtering based approaches for modeling user-item inter-

actions with the assumption that all data is collected beforehand.

However, operating on the entire data in a batch fashion makes

these approaches less suited for online recommendation scenarios,

where new users or items arrive continually at a several orders of

magnitude higher rate: e.g., new ads in online advertising platforms

or news at an online newspaper. Under these severe cold-start chal-
lenges, these algorithms either do not scale well when operating on

a growing dataset as vast amount of new data arrive, or they com-

pletely ignore previously computed results and run from scratch

on recent data without exploiting all available data [36].

To address the cold-start challenge in online recommendations,

a number of attempts have been working on exploring contextual

bandit algorithms to model user-item interactions in a timely man-

ner, which yield the state-of-the-art performance [27, 33]. These

methods adaptively learn the underlying representations of users or

items (e.g., user’s preference or item’s characteristic) by introducing

the trade-off strategies in context-based exploration/exploitation

for online decision-making [20]. In particular, the basic idea of

exploitation is to maximize immediate reward given the current

information, while exploration aims to gather more unbiased sam-

ples to improve the accuracy of preference learning. In each round

of contextual bandit algorithms, they update users/items feature

representations based on current positive (e.g., user click recom-

mended items) and negative (e.g., user ignore recommended items)

user-item interactions.

However, existing bandit methods are mostly limited to linear

models or combine user and item feature embeddings via a simple

non-linear concatenation [9, 20, 27], which cannot capture the com-

plex non-linearity of latent user-item interactive structures, leading

to suboptimal online recommendation results [29]. In this work,

we strive to generalize the contextual bandit framework with mod-

eling of non-linearities based on deep neural network architectures.

There are several key technical challenges, in order to fully explore

the neural architecture of contextual bandit framework:

https://doi.org/10.1145/3366423.3380178
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Inter-dependencies across multi-modal interactions. To sim-

plify the model design, conventional contextual bandit methods

did not fully explore the negative user-item interactions (user’s

dislike for items) and completely ignored latent relations between

users and non-recommended item candidates (unobserved user-

item interactions) [3, 5]. However, in real life, users’ preference can

be learned from not only his/her positive feedback (e.g., click), but
also the knowledge of his/her negative and unobserved interactions

with items [34]. For example, users’ negative feedback on dislike

recommended items may carry helpful information to reconsider

the relations between users and other non-recommended candi-

dates. In such cases, the multi-modal (i.e., positive, negative and
unobserved) user-item interactions are no longer independent and

are highly correlated in a hierarchical way. Hence, it is challenging

to distill cross-modal signals from the collective behaviors of users.

Efficient feature learning for newly emerged users/items. Al-
though there exist recent work leveraging external features from

users or items (e.g., user social network information and item de-

pendent relations) to quantify potential interactive structures for

new users and items (without interaction logs), a deficiency is that

they use the entire network structure to generate features for new

users/items (e.g., using Laplacian matrix computation) [1], which

makes these methods computationally expensive and not scalable

to online recommendation scenarios. In online recommendation

scenarios, we believe it is of critical importance to develop a con-

textual bandit model that can exploit external features for newly

emerged users and items in an efficient and explicit manner.

To overcome the aforementioned issues, this work develops a

Graph Regularized Cross learning framework (GRC) by jointly mod-

eling cross-modal user-item interactions and contextual features

from either users or items in capturing users’ future preferences in

online recommendation. Specifically, we first propose to enhance

the conventional contextual bandit framework with the neural

network architecture, empowering it to model complex inherent

user-item interactions with non-linearities. In addition, to compre-

hensively model effects of positive and negative interactions as

well as the unobserved interactions (implicit feedback) between

users and non-recommended item candidates, we augment our

GRC model by developing a novel representation framework with

a cross-interaction metric learning framework.

Furthermore, to realize the efficient user preference modeling of

newly emerged users/itemswith the extracted ancillary features, we

propose to leverage local bipartite graph structures between users

and items. In particular, we develop a graph-regularized embedding

module which allows external knowledge to guide the embedding

initialization process of new users/items. With the cooperation of

the metric learning framework and a graph-regularized embedding

module, multi-modal user-item interactions and external network

structural information of users/items can be leveraged to enhance

the representation learning of both users and items. GRC bridges

the gap between dynamic user behavior modeling and latent repre-

sentations using graph embedding, which enables the speed up of

capturing dynamic users’ preferences.

The main contributions of this paper are summarized as follows:

� We study the problem of modeling users’ dynamic preferences

in online recommender systems, with attention to cross-modal

user-item interactions and external features.

� We develop a novel framework GRC with a graph-regularized

embedding module which is tailored to cooperate with the metric

learning technique to model cross-modal user-item interactions.

GRC is a general neural network architecture for contextual

multi-armed bandit problem with the careful consideration of

both positive and negative user feedback as well as the implicit

feedback from non-recommended item candidates.

� Through extensive experiments conducted on three different real-

world datasets, we demonstrate that GRC consistently outper-

forms several state-of-the-art baselines across various settings.

The organization of this paper is as follows. Section 2 formalizes

the problem of contextual bandit learning. Section 3 presents the

details of GRC framework to solve the problem. We explain the

experimental results in Section 4. The related work is discussed in

Section 5. Finally, we conclude this work in Section 6.

2 PRELIMINARIES AND PROBLEM
FORMULATION

We first introduce some terminologies and formalize the problem.

Then, we shortly recapitulate the widely used contextual bandit

algorithms and discuss their limitations in online recommendations.

To better explain the proposed method, we list the main notations

we use in this paper in Table 1.

2.1 Problem Formulation
Contextual Multi-armed Bandit Problem. Contextual multi-

armed bandit algorithms have been widely applied for online per-

sonalized recommendations to balance exploration and exploitation

with the incorporation of various contextual information. In the

multi-armed bandit problem, we consider a scenario of I users (i.e.,
u1; :::;ui ; :::;uI ) and J items (i.e., v1; :::;vj ; :::;v J ). For simplicity,

we use the index of user i representing ui , and the index of item

j representing vj for rest of the paper. In each trail t , we regard
the candidate item set as arms denoted asAt = fat

1
; :::; at

k ; :::; at
K g,

where K is the number of arms indexed by k .
At each round t , the algorithm observes a given user ui from the

user set and K arms. We denote user embedding and arm embed-

ding at round t as θut
i
and θat

k
, respectively. Then, the arm with

the highest expected reward is selected to recommend to user i at
timestamp t and then receives the his/her feedback. In general, the

contextual multi-armed bandit problem can be considered as a se-

quential decision problem, which aims to achieve highest long-term

rewards. Formally, the objective is to maximize the accumulated

rewards RT for previous T trails as follows:

RT =

TÕ
t=1

r t
k ; (1)

where r t
k is the actual reward of presented arm at

k pulled by the

bandit algorithm in trail t . A nature goal is to pull the arm with the
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Table 1: Symbols and Definitions

Symbol Definition

i , j , k , t the indices of users, items, arms, trails

I , J , K , T the number of users, items, arms, trails

At
the set of arms for candidate item selection in trail t

xt
k the context feature vector by integrating user ut and arm ak

r t
k , r̂ t

k the observed, expected reward of the pulled arm in trail t
et

k , dt
k the reward expectation and deviation of the pulled arm in trail t

θut
i

the embedding of user i in trial t

θat
k

the embedding of arm k in trial t

highest estimated reward in each trail. The key idea of contextual

bandit algorithm is learning a reward mapping function in order to

infer the arm with the highest reward to pull.

2.2 Linear Upper Contextual Bandit (LinUCB)
Among various contextual bandit algorithms, Linear Upper Confi-

dence Bound (LinUCB) [20] is a key architecture for online personal-

ized recommendation tasks and has shown to provide superior per-

formance over others [1]. Many subsequent extensions enhanced

the basic LinUCB framework by incorporating analysis on various

properties of users and items [3, 9, 27]. Specifically, the reward

mapping function of the LinUCB framework consists of two impor-

tant components: (i) reward expectation: it estimates the interaction

score between user i and arm at
k indicating the likelihood of user

i’s interest in arm at
k . (ii) reward deviation: it applies upper confi-

dence bound to assess the uncertainly of the reward expectations,

which aims to form unbiased samples by pulling aims with high

uncertainty to improve the learning accuracy. A smaller confidence

interval indicates the lower uncertainty in the derived reward and

a larger confidence interval means that the derived reward has a

higher uncertainty. Formally, the reward between user i and arm at
k

in trail t can be calculated by the summation of reward expectation

and deviation as follows:

r̂ t
k = xt

k wk|{z}
reward expectation e t

k

+α
q

xt
k

T A�1k xt
k|          {z          }

reward deviation d t
k

; (2)

where xt
k represents the concatenated feature vector of user em-

bedding θut
i
and arm embedding θat

k
, Ak := OT

k Ok + I, Ok 2 Rm�d

is a design matrix in trial t , whose rows correspond tom training

inputs (e.g., m contexts that are observed previously for arm at
k ),

wk denotes the learnable weight vector of arm at
k , y

t
k represents

the predicted reward of arm at
k in trail t , and α is the coefficient to

balance the exploration and exploitation.

However, several significant limitations exist in the LinUCB

based solutions: (i) it assumes that reward expectation of an arm is

linear in the contextual feature vector. As a result, LinUCB cannot

deal with the complex non-linear interaction structures between

users and items in real-world applications. (ii) The LinUCBmethods

often count on a sufficient amount of positive and negative user-

item interaction data, but fail to model the implicit feedback of item

candidates. It follows that these methods may not comprehensively

capture the latent interaction structures between users and items.

(iii) The success of most existing LinUCB models rely on the vari-

ous features from both users and items. Many practical scenarios,

however, only partial features of users or items could be obtained

for analysis at the training time. To overcome the above limitations,

we propose to explicitly explore the cross-dimensional signals from

multi-modal user-item interactions and partial external contextual

features in advancing the online personalized recommendation

task.

3 METHODOLOGY
In this section, we present the details of GRC framework, which

pursues a full neural treatment of reward mapping function model-

ing to accurately predict the rewards between users and candidate

arms. The overall framework is shown in Figure 1.

3.1 Neural Contextual Bandit Framework
In this work, we propose an instantiation of GRC adopting a multi-

layer perceptron (MLP) module to endow the bandit algorithm of

modelling non-linear structure of user-item interactions. In particu-

lar, in trail t , we first concatenate the embedding vector of user θut
i

and arm θat
k
as xt

k , and then feed the concatenated representation

vector into the MLP module. The output of the final layer in MLP

is the reward expectation et
k . By doing so, the above incorporation

unifies the strengths of dynamics of contextual bandit algorithm

and non-linearity of MLP for modelling time-evolving user-item

latent structures. Formally, we present MLP as:

z1 =ϕ1„W1z0 + b1”;
� � �

zL =ϕL„WLzL�1 + bL”

ŷ =WozL + bo; (3)

where L is the number of hidden layers (indexed by l ). For the l layer,
ϕn ,Wn and bn represent the activation function (e.g., ReLU or tanh)

of MLP layers and learnable parameters. We take the contextual

vector xt
k as the input of MLP (i.e., z0 = xt

k ), the reward expectation

is formally represented as et
k = MLP„xt

k ”.

By doing so, we mitigate the limitation of existing contextual

bandit techniques with the assumptions, i.e., linear or simple non-

linear payoff in estimating the uncertainty of reward deviation,

However, directly deriving the corresponding upper confidence

bound for uncertainty estimation remains as a daunting task, since

the context information is provided in a dynamic environment and

is not highly correlated with previous states and actions.

To address the aforementioned challenge, we apply dropout lay-

ers to learn the reward mapping function by unifying the strengths

of neural network models and stochastic modeling [6]. Particu-

larly, to supercharge our model with arbitrary depth and non-

linearities, we apply dropout before every weight layer, which

is shown to be mathematically equivalent to an approximation to

the probabilistic deep Gaussian process [7]. After our model iterat-

ing to convergence, uncertainty estimates can be extracted from

dropout neural networks. In particular, we sample N times from

Bernoulli„N ;pl ” distribution of network configurations for each

layer l , and obtain its corresponding parameters fW1; � � � ;WN g.

HereWN = fWN
1

; � � � ; WN
L g are the L weight matrices sampled
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Figure 1: The Graph-Regularized Cross-Modal Learning (GRC) Framework. GRC endows the contextual bandit architecture
with the complex level of non-linearities, with the integration of a multi-layer perceptron and dropout mechanism. To accu-
rately select an arm to users for recommendation, GRC carefully investigate the inter-dependencies among positive, negative
and unobserved user-item interactions based on a deep metric learning framework. To alleviate the data incompleteness and
sparseness issue, a graph-regularized embedding module is introduced to e�ectively transfer knowledge from ancillary fea-
tures in guiding the cross-modal behavior learning.

in t -th iteration. Thereafter, we can formally evaluate the Monte
Carlo estimates with the input variables as:

et
k �

1
N

NÕ

n=1

e¹t ;nº
k =

1
N

NÕ

n=1

MLP¹nº¹xt
k º; (4)

whereMLP¹nº represents the MLP with parameter setW n . Sim-
ilarly, we can evaluate the second moment of input variables in
Monte Carlo estimation process as follows:

dt
k � � � 1 +

1
N

NÕ

n=1

»¹e¹t ;nº
k º2 � ¹ et

k º2¼; (5)

where� is the model precision, which is de�ned as� := pl 2

2N � [28].
The collected results of stochastic forward passes through the
model, and can be incorporated into our neural network model
which is trained with dropout mechanism.

3.2 Cross-Modal Interaction Modeling with
Metric Learning

Another challenge of existing contextual bandit algorithm is how
to su�ciently explore user-item interactions, very few positive
or negative rewards based on clicks are observed in return, with
other unselected items in the candidate pool completely ignored.
To address this challenge, we augment our neural contextual bandit
framework to carefully investigate the inter-dependencies across
multi-modal user-item interactions (i.e., positive, negative and unob-
served) with metric learning [24]. The basic idea of metric learning

is to learn a distance metric to make similar input pairs closer to
each other and make dissimilar input pairs further apart.

To model the latent relations between users and items, we apply
triangle inequality relation structures to capture the dependencies
among positive, negative and other unselected candidate user-item
interactions. This is based on the assumption that users are more
likely to be correlated with their interested items than uninterested
ones [15]. In particular, given the preference representation� u t

i
of a useri , the representations of clicked items are expected be
closer to� u t

i
than the representations of the unselected items in the

feature space, while the representations of unselected items should
be closer to� u t

i
than the representations of the unclicked items. In

this way, we incorporate positive, negative interactions as well as
the implicit feedback of those unselected candidate items. Formally,
the metric learning module consists of two key steps:

(i) If the selected armat
p receives the positive feedback from useri

at trail t (useri is interested in itemat
p) in trail t , our GRC will guide

the representation learning process to make the embedding vectors
of user� u t

i
and arm� at

p
closer to each other, and the embedding

vectors of user� u t
i

and unchosen arms (i.e.,� at
p

2 A t n� at
k
) further

apart.

(ii) If we observe the negative feedback for the selected armat
p

from useri at timestampt (useri is uninterested in itemat
p), the

learned embedding vectors of user� u t
i

will be more di�erent from
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