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Abstract—Inductive Matrix Completion (IMC) is an important class
of matrix completion problems that allows direct inclusion of available
features to enhance estimation capabilities. These models have found ap-
plications in personalized recommendation systems, multilabel learning,
dictionary learning, etc. This paper examines a general class of noisy
matrix completion tasks where the underlying matrix is following an
IMC model i.e., it is formed by a mixing matrix (a priori unknown)
sandwiched between two known feature matrices. The mixing matrix
here is assumed to be well approximated by the product of two sparse
matrices—referred here to as “sparse factor models.”” We leverage the
main theorem of [1] and extend it to provide theoretical error bounds for
the sparsity-regularized maximum likelihood estimators for the class of
problems discussed in this paper. The main result is general in the sense
that it can be used to derive error bounds for various noise models. In
this paper, we instantiate our main result for the case of Gaussian noise
and provide corresponding error bounds in terms of squared loss.

I. INTRODUCTION

In recent years, matrix completion has been a venue for constant
research—both from theoretical as well as algorithmic front. The
applications include collaborative filtering, multiclass learning, di-
mensionality reduction etc. In most general terms, the aim of these
problems is to estimate the elements of a matrix X* € R™*"2
from noisy observations collected on only a subset of its locations.
Of course, such estimation problems are ill-posed without further
assumptions, since the value of X* at the unobserved locations can
be arbitrary. A common approach is to augment the inference method
with the assumption that the underlying matrix to be estimated
exhibits some form of intrinsic low-dimensional structure, making,
in some cases, the problem feasible. For example, the assumption of
low-rank on the target matrix has been the main focus of research for
these problems. Even though the rank constrained problem is non-
convex and difficult to analyze, convex relaxations to these problems
have been well studied in noiseless [2], additive uncertainty [3],
and even in settings where observations are nonlinear (e.g., one-
bit quantized [4]). However, due to the computational complexity
reasons, the most popular algorithms to solve these problems are
variants of alternating minimization [1]; the low-rank structure is
imposed explicitly via bilinear models i.e., X* is assumed to be a
product of two factor-matrices as

X*=D"A", 1)

where D* € R™*", A* € R™"™ and r < min(ni,n2). Slight
modifications of this formulation also allows for explicit control and
facilitates imposing additional constraints like positivity [S], sparsity
[6], or even tree-sparsity [7] on the factors.

In terms of the well-known user-item recommendation problem [8]:
X* pertains to the rating matrix, D* and A denote the matrices
of user and item latent-factors, respectively. Apart from the rating
information, generally, we also have other user and item side-features
(like age, gender, etc) that can be used to further improve the
quality of estimation. These features can be included via a Bayesian
framework [9], [10] or by directly changing the model as in Inductive
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Matrix Completion (IMC) [11], [12] where we have the following
model assumption on X*:

X* = AW*B = AP*Q"B, )

where A € R™*™ B € R™*"2 are known matrices, for example,
user and item feature matrices, W* € R"*" is a mixing matrix
whose low-rank structure is explicitly imposed via a bilinear model
W* — P*Q*, P* c er Xr and Q* c RTX’I‘Q'

The goal of this paper is to provide estimation error bounds for
matrix completion under inductive setting, as in (2), by using the
framework of regularized maximum likelihood estimation [1]. For
generality, we derive these bounds under the assumption that both P*
and Q™ can be sparse, and noise can follow any generic distribution.
This kind of sparse-structure arises in recommendation problems
where the desire is to have sparse latent vectors due to requirement
of low computational and storage complexity [13], and variant of
dictionary learning problems where apart from the coefficient matrix
being sparse, dictionary itself is modeled to be sparse [14].

Before delving into the specific contributions of this paper, we
first put our work in the context of exiting literature in the next sub-
section.

A. Related Works

Our inference tasks here essentially entails learning two structured
factors in a bilinear model. With a few notable exceptions (e.g.,
low-rank matrices and certain non-negative matrices [15], [16]), the
non-convex bilinear models studied in this paper are difficult to
analyze. Several recent efforts in the dictionary learning literature
have established theoretical guarantees on identifiability, as well as
algorithmic analyses of a number of optimization approaches [17]—
[20]. The most closely related to our work are [1], [6], [17], where
authors provide a framework for deriving estimation error bounds
for the models of form (1) under various noise distributions and
sparsity structure on A* by using a regularized maximum-likelihood
approach based on the ideas from [21]. The Overall theme of the
estimation bounds obtained using this framework is that the error of
their estimate, X of X*, decays as the ratio of number of degrees of
freedom to estimate over the number of observations.

The idea of including side features in the factorization models to
improve recommendations is considered using Bayesian formulations
in [22] or via directly incorporating these features in a generative
model in IMC [12], Factorization Machines [23]. The statistical
performance of IMC has been theoretically analyzed via convex relax-
ations based on nuclear-norm in noiseless [12] and noisy settings [24].
From the algorithmic perspective, provable alternating-minimization
based approach with bilinear models has been recently proposed and
analyzed [11]. Our results in this paper provide additional insights
into these problems under a general setting of noise and sparsity of
the bilinear factors. It is to be noted here that the aim of all these
related works is to accurately estimate the mixing matrix W*; we
provide error bounds for the estimation of X*.



Many recent works have used IMC framework for large scale
recommendations [25] or extended IMC to automatically construct
better features [26].

B. Specific Contributions

In this paper we provide estimation error guarantees for matrix
completion using regularized maximum likelihood estimator under
the model described in (2) for the cases where the factor matrices
are dense (either one or both), or when W™ is itself sparse. In order to
arrive at these bounds, we extend the fundamental theorem proposed
in [1] to the inductive matrix completion setting studied here. This
extension is detailed in Theorem II.1. The main utility of this theorem
is that it can provide estimation error guarantees for a variety of
noise distributions; for example, Gaussian, Poisson, Laplace, and even
under the extreme quantized setting of 1-bit observations. Here we
instantiate it for the Gaussian noise and obtain corresponding error
guarantees.

C. Preliminaries

To set the stage for the statement of our main result, we recall
several information-theoretic preliminaries. When p(Y) and ¢(Y)
denote the pdf (or pmf) of a real-valued random variable Y, the
Kullback-Leibler divergence (or KL divergence) of ¢ from p is
denoted D(p||q) and given by

p(Y)

Dll) =, 1oz 237 |

where the logarithm is taken to be the natural log. By definition,

D(p||q) is finite only if the support of p is contained in the support of

g. Further, the KL divergence satisfies D(p||¢) > 0 and D(p||q) =0

when p(Y) = ¢(Y’). We also use the Hellinger affinity denoted by
A(p, ¢q) and given by

q(Y)

p(Y)

p(Y)

q(Y)
It is known that 0 < A(p,q) < 1. When p and ¢ are parameterized
by elements X;; and X;; of matrices X and X, respectively,
so that p(Yi;) = px,;(Yij) and q(Yij) = gz, (Yi;), we
use the shorthand notation D(px|lgx) = > Dpx ;s llax, j) and

A(p7 q) = ]EP

q

A(px,q%) £ H” A(PXf,,ja‘b?u)- Finally, for a matrix M we
denote by |[M||o its number of nonzero elements, and ||M||max
the magnitude of its largest element (in absolute value). Also,
(a1 V a2) = max(a1, az).

II. PROBLEM STATEMENT AND RECOVERY RESULT

Our focus here is to estimate a matrix X* that admits a model as in
(2) from noisy observations Y.s = {Y;,;} (i j)es collected at a subset
S C [n1] X [n2] of its locations. Sampling locations are randomly
chosen in the sense that for an integer m satisfying 4 < m < nineg
and v = m(ninz2) ", each location is observed independently via a
Bernoulli(«y) model. Going forward, we assume the following bounds
on the participating matrices:

”X*”max S Xmax/27 HP*Hmax S 1, ||Q*||max S Qmax7
||A||max S Amax, and ||B||max S Bmax,

for some positive constants Qmax, Amax, and Bmax.
Given S and Ys, we write the joint pdf (or pmf) of the observa-
tions as
pxz(Ys) & ] »xr,(Yig), (©)
(i,5)es

where px . (Y;,;) denotes the corresponding scalar pdf (or pmf), and
we use the shorthand X% to denote the collection of elements of X*
indexed by (4,7) € S. Then our task may be described succinctly as
follows: given S and corresponding noisy observations Ys of X*
distributed according to (3), our goal is to estimate X* under the
assumption that it admits a model as in (2).

Our approach will be to estimate X* via sparsity-penalized max-
imum likelihood; we consider estimates of the form

{—logpxs(Ys) + Ap[|Pllo + AalQllo},

C))
where {Ap, Aq} > 0 are user-specified regularization parameter, Xs
is shorthand for the collection {X; ;}(; jyes of entries of X indexed
by S, and X is an appropriately constructed class of candidate
estimates. To facilitate our analysis here, we take X to be a countable
class of estimates constructed as follows: for a specified 5 > 1, we set
Liey = 2“03;2("”"2)% and construct P to be the set of all matrices
P € R™*" whose elements are either 0, or are discretized to one of
Liev uniformly spaced levels in the range [—1, 1] and Q to be the
set of all matrices Q € R"*"2 whose elements either take the value
zero, or are discretized to one of L., uniformly-spaced levels in the
range [—Qmax, Qmax]. Then, we let

X2 {X=APQB : PP, Q€ Q, | X|max < Xmax}. (5

X = arg min
X=APQBeX

Our main result establishes error bounds under general noise or
corruption models. We state the result here as a theorem; its proof
appears in Section IV.

Theorem IL.1. Let S, v, m, B, X, and Y s be as defined above and
Chb is any constant satisfying

> * AR
Cp 2 maxmax D(px; lpx,;)

Then for any

Ap > 2 (1 + %) (41log(r1) + Blog(ni V n2)) (6)
Aq > 2 (1 + %) (41og(r2) + Blog(ni V n2)) 7

the complexity penalized maximum likelihood estimator (4) satisfies
the (normalized, per-element) error bound

Esvs [*2 log A(pg», px» )] < 8Cp logm N

ninz - m
3.mm{D(pLpr>+
Xex ning
4 4)1 P
((APHQH Co(B+ >Sog<mvnz>) (n IIOTJ:LHQHo)}

Before proceeding to specific case of Gaussian noise, we note
a few salient points about this result. First, as alluded above, our
results is general and can be used to analyze the error performance
under a variety of noise models. Specialization to a given noise model
requires us to compute the upper bounds for KL divergences in terms
of problem parameters, and the lower bound of negative log Hellinger
affinities in terms of the required error function. Second, the above
result is kind of an oracle bound, in that it is specified in terms of
a minimum over X € X. We can construct a valid upper bound by
evaluating this for any X € X'. We construct a specific X € X’ that
is close to X*, and evaluate the oracle bound for the constructed
point to get a non-trivial upper bound.

Finally, we note that the optimization problem (4) is non-convex,
as often is the case, not only because of ¢y penalty, or discretized



space (X) used for proofs in this paper, but due the fundamental
challenge posed by bilinear models.

A. Implications for Gaussian Noise

Below we provide scaling behavior of error bound with problem
parameters for Gaussian noise with known variance by instantiating
Theorem II.1. The joint likelihood of observations can be written as

1 1 «
px;(Ys) = (@ro)si2 exp (*7‘2 1Ys — Xs”%) ;o (8

where we have used the shorthand notation |Ys — X%||% £

Z(i’j)es(Yi,J- - Xi’ij)Q. To that end, we fix 3 as

IOg(G\/ﬁ . (T Ty 7‘2) . Amameameax/Xmax)
log(n1 V n2)
©)

for describing the number of discretization levels in the elements of
each factor matrix and regularization parameters (Ap, A\q) equal to
right hand side of (6). In this setting we have the following result;
its proof appears in Section IV-B.

Corollary IL1. Let 8, Ap, and Aq be as defined above with Cp =
2X2 /0> The estimate X obtained via (4) satisfies

ﬂ:max{l,l—i—

Esve [IIX* = X]}] 0
P = (10)

@) ((02 + X2 k) (M> log(n1 V n2)> .

m

A few comments are in order regarding these error guarantees.
We may interpret the quantity |[|P*|lo + [|Q*|lo as the number
of degrees of freedom to be estimated, and in this sense we see
that the error rate of the penalized maximum likelihood estimator
exhibits characteristics of the well-known parametric rate (modulo the
logarithmic factor). If P* and Q™ are instead dense, then we get the
familiar error bound that decays as (1 4 r2)r/m with m. Compared
this with the case where matrix X™* is just low-rank (as in formal
matrix completion tasks), the error rates are of the form (ni1+n2)r/m
[1]. Clearly, the IMC model has a better error performance if ro < ng
or even better if the factor matrices are sparse.

The presence of the factor X2 .. is akin to the incoherence
conditions prevalent in the matrix-completion literature. In essence,
it pertains to the spikiness of the underlying matrix we are trying to
estimate [27].

ITII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we considered the matrix completion problem under
the IMC model assumption. We provided a generic theorem which
can be extended to many settings including different noise distribu-
tions and underlying matrix structural assumptions. We considered
the specific case of Gaussian noise and demonstrated the estimation
error guarantees. The extensions to other noise distributions and ma-
trix structures are left for future research direction. Obtaining lower
bounds for the estimation problem discussed here and understanding
the min-max optimality of the bounds obtained in this paper is yet
another interesting direction for future exploration.

IV. PROOFS
A. Proof of Theorem I1.1

We utilize the following Lemma from [1] and apply it to our
problem.

} 3.mm{M+ (£+4CD10g2) pen(X)}’

Lemma IV.1. Let X* be an n1 X ny matrix whose elements we aim
to estimate, and let X be a countable collection of candidate recon-
structions X of X*, each with corresponding penalty pen(X) > 1,
so that the collection of penalties satisfies the summability condition
Exex 2-Pen(X) < 1. Given m, v, S, Ys, and Cp as explained
earlier, we have that for any £ > (1 + QCTD) -2log 2, the complexity
penalized maximum likelihood estimator

X = arg)rgleig {—logpxs(Ys)+¢-pen(X)},

satisfies the (normalized, per-element) error bound

Esvs [-2log A(pge,px-)] _ 8Cplogm N
nin2 - m

n1n2 3 m

where, as denoted, the expectation is with respect to the joint
distribution of S and Y s.

Now, consider any discretized matrix factors P € P and Q € Q,
as described in Section II. For L] £ 2M°82("1")1 e encode each
nonzero element of P using log, L, bits to denote its location
and log, Liey bits for its amplitude. We can then encode P with
IP|lo nonzero entries by using ||P|lo(logy Lioe + log, Liey) bits.
Similarly, we can encode Q using || Q||o(log, L2, +log, Liey) where
L2, £ 2Mee2(r2M1 Now, we let X’ be set of all such X = APQB,
and let the binary code for each X be the concatenation of the binary
code for P followed by the binary code for Q. It follows that we
may assign penalties pen(X) to all X € X’ whose length satisfy

pen(X) = |[Plo(log(Lice- Liev)) +[1Qllo (logy (LiZe - Liev)), (11)

given that A and B are known matrices.

It is easy to see that such codes are (by construction) uniquely
decodable, so we have that 3 . ./ 27Pen(X) < 1 by the well-known
Kraft-McMillan Inequality [28]. Now let X’ be any subset of X”’. For
randomly subsampled and noisy observations Y s our estimates take
the form

X¢ = arg

xoapin,  A-logpxs(Ys) + & pen(X)}.

Further, using Lemma IV.1 we have

Esys [_2 log A(pge, px- )] < 8Cp logm n
nin2 - m

3 min {D(px*llpx)jL
Xex nin2

4Cp log 2 P
<§ + Diog) (108, Lioe + logy Liey) (M) } 7

3 m

where log, Lioe = (logy Lz, vV logy L2

loc

). Finally, letting

Ap = €-(logy, LL. +log, Liey)
Ag = & (logy L2, +logy Licy)

and using the fact that

10g2 Lic + 10g2 Llev

< 8log(r1) + 281log(n1 V n2)
logy Lige + 108, Liev <
<

8log(ra) + 2B log(n1 V n2)

log, Lioe + logy Liev (B +4) -log(n1 V n2) - 2log,(e)

which follows by our selection of Lic, and Ljoc and the fact that r1 <
ni, r2 < ng; it follows (after some straightforward simplification)



that (Ap, Aq) follow (6), and the estimate (4) satisfies

Es.ys [-2log A(pg,px-)] _ 8Cp logm.__

ninz - m
3. min {D(px*\Ipx)+
Xex niNo
4C 4)1 \Y, P
<()\P+)\Q)+ (8 + )30g(n1 n2)) (H ||0:1HQH0)}

as claimed.

B. Corollary 1.1

Proof: For X* as specified and any X € X, using the model
(8) we have
- Xi;)?
202
for any fixed (¢,7) € S. It follows that D(px=|px) = ||IX* —
X||% /202, and using the fact that the amplitudes of entries of X*
and all X € A& are no larger than Xyax, it is clear that we may
choose Cp = 2X2,,./c?. Further, for any X € X and any fixed
(1,7) € S it is easy to show that in this case

(xz, -
—QIOgA(px,iyjpr;"J) =

D(pX;ij ”pxi,j) =

so that —2log A(px, px~) = ||X* — X||%/402. 1t follows that

Esvs [IX* - XI3]
402
Incorporating this into Theorem II.1, we obtain that for regularization
parameters as in (6) with Cp substituted, the sparsity penalized
maximum-likelihood estimate satisfies the per-element mean-square

error bound

Es,ys [-2log A(pg, px+)] =

Esys [HX* —XH%] < 64X2 . logm

ninsg - m
* 2
Xex nin2
(202 Op 4 Aq) + 16X3,ax (8 + 4) log(n1 V nz))
3

it

We now establish the error bound for the case where P* and
Q" are sparse with corresponding cardinality ||[P*||o and ||Q*||o-
Consider a candidate reconstruction of the form X7 = AP;Q;B,
where the elements of P are the closest discretized surrogates
of the nonzero entries of P*, and the entries of and Qj are the
closest discretized surrogates of the nonzero entries of Q*. Denote
P, =P"+ Ap- and Q; = Q" + Aq~. Then it is easy to see that

X; —X* = A(P*AQ* + Ap+ Q* + Ap= AQ*)B‘

Given the range limits on allowable P and Q and that each range is
quantized to Lie, levels, we have that |Ap=||max < 1/(Liev — 1)
and [|Aq+|lmax < Qmax/(Liev — 1). Now, we can obtain a bound
on the magnitudes of the elements of X7 — X* that hold uniformly
over all ¢, 7, as follows

||X; - X*Hmax
= max I((A(P"Aq+ + Ap+Q" + Ap+Aq+)B)i

6 crer1-T2 - Amameameax
’
Llcv

(12)

where the inequality follows from a application of triangle inequality
followed by the bounds on || Ap* ||max and || Aq+||max and the entry-
wise bounds on elements of allowable P and Q, and because Lie, >
2. Now, it is straight-forward to show that our choice of 8 in (9)
implies

1277172 - AmaxBmaxQmax

Llev > ’
Xmax

so each entry of Xj — X* is bounded in magnitude by Xmax/2. It
follows that each element of the candidate X} constructed above is
bounded in magnitude by Xmax, so X is indeed a valid element of
the set X

Further, the approximation error analysis above also implies di-
rectly that

13)

IX* = X5 ll% _ 1 Z

nin2 ningz -
i€[n1],j€[n2]

36 : (T Ty T2)2(Amameameax)2
L2

lev

(AP;Q;B -~ AP"Q"B);;

IN

X2
m

where the last line follows from the fact that our specific choice of

B in (9) also implies

6\/% . ("" A 7"2) : Amameameax
Xmax '

Now, evaluating the oracle term at the candidate X = AP;Q;B,

and using the fact that |[P}]lo = ||[P*|lo and [|Q}llo = ||Q*]l0, we

have

<

I

Liev > (14)

Esvs [HX* - XH%] - 70X2 . logm n

nina - m

48(0” + 2X7ax) (B + 4) log(n1 V n2) (—“P* o + 19" ”0) :

m
]
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