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Abstract
Modern big data processing platforms employ huge in-
memory key-value (KV) maps. Their applications simul-
taneously drive high-rate data ingestion and large-scale ana-
lytics. These two scenarios expect KV-map implementations
that scale well with both real-time updates and large atomic
scans triggered by range queries.

We present KiWi, the first atomic KV-map to efficiently
support simultaneous large scans and real-time access. The
key to achieving this is treating scans as first class citi-
zens, and organizing the data structure around them. KiWi
provides wait-free scans, whereas its put operations are
lightweight and lock-free. It optimizes memory manage-
ment jointly with data structure access. We implement KiWi
and compare it to state-of-the-art solutions. Compared to
other KV-maps providing atomic scans, KiWi performs ei-
ther long scans or concurrent puts an order of magnitude
faster. Its scans are twice as fast as non-atomic ones imple-
mented via iterators in the Java skiplist.

1. Introduction
Motivation and goal. The ordered key-value (KV) map ab-
straction has been recognized as a popular programming in-
terface since the dawn of computer science, and remains an
essential component of virtually any computing system to-
day. It is not surprising, therefore, that with the advent of
multi-core computing, many scalable concurrent implemen-
tations have emerged, e.g., [6, 11, 12, 22, 27, 30].

KV-maps have become centerpiece to web-scale data pro-
cessing systems such as Google’s F1 [33], which powers
its AdWords business, and Yahoo’s Flurry [4] – the tech-
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nology behind Mobile Developer Analytics. For example, as
of early 2016, Flurry reported systematically collecting data
of 830,000 mobile apps [1] running on 1.6 billion user de-
vices [2]. Flurry streams this data into a massive index, and
provides a wealth of reports over the collected data. Such
real-time analytics applications push KV-store scalability re-
quirements to new levels and raise novel use cases. Namely,
they require both (1) low latency ingestion of incoming data,
and (2) high performance analytics of the resulting dataset.

The stream scenario requires the KV-map to support fast
put operations, whereas analytics relies on (typically large)
scans (i.e., range queries). The consistency (atomicity) of
scans is essential for correct analytics. The new challenge
that arises in this environment is allowing consistent scans
to be obtained while the data is being updated in real-time.

We present KiWi, the first KV-map to efficiently support
large atomic scans as required for data analytics alongside
real-time updates. Most concurrent KV-maps today do not
support atomic scans at all [6, 9, 11, 12, 22, 27, 28, 30]. A
handful of recent works support atomic scans in KV-maps,
but they either hamper updates when scans are ongoing [14,
32], or fail to ensure progress to scans in the presence of
updates [15]. See Section 2 for a discussion of related work.

The emphasis in KiWi’s design is on facilitating synchro-
nization between scans and updates. Since scans are typi-
cally long, our solution avoids livelock and wasted work by
always allowing them to complete (without ever needing to
restart). On the other hand, updates are short (since only
single-key puts are supported), therefore restarting them in
cases of conflicts is practically “good enough” – restarts are
rare, and when they do occur, little work is wasted. Formally,
KiWi provides wait-free gets and scans and lock-free puts.

Design principles. To support atomic wait-free scans,
KiWi employs multi-versioning [10]. But in contrast to the
standard approach [26], where each put creates a new ver-
sion for the updated key, KiWi only keeps old versions that
are needed for ongoing scans, and otherwise overwrites the
existing version. Moreover, version numbers are managed by
scans rather than updates, and put operations may overwrite
data without changing its version number. This unortho-
dox approach offers significant performance gains given that



scans typically retrieve large amounts of data and hence take
much longer than updates. It also necessitates a fresh ap-
proach to synchronizing updates and scans, which is a staple
of KiWi’s design.

A second important consideration is efficient memory
access and management. Data in KiWi is organized as a
collection of chunks, which are large blocks of contiguous
key ranges. Such data layout is cache-friendly and suitable
for non-uniform memory architectures (NUMA), as it allows
long scans to proceed with few fetches of new data to cache
or to local memory. Chunks regularly undergo maintenance
to improve their internal organization and space utilization
(via compaction), and the distribution of key ranges into
chunks (via splits and merges). KiWi’s rebalance abstraction
performs batch processing of such maintenance operations.
The synchronization of rebalance operations with ongoing
puts and scans is subtle, and much of the KiWi algorithm is
dedicated to handling possible races in this context.

Third, to facilitate concurrency control, we separate
chunk management from indexing for fast lookup: KiWi
employs an index separately from the (chunk-based) data
layer. The index is updated lazily once rebalancing of the
data layer completes.

Finally, KiWi is a balanced data strucutre, providing log-
arithmic access latency in the absence of contention. This
is achieved via a combination of (1) using a balanced index
for fast chunk lookup and (2) partially sorting keys in each
chunk to allow for fast in-chunk binary search. The KiWi
algorithm is detailed in Section 3 and we discuss its correct-
ness in Section 5.

Evaluation results. KiWi’s Java implementation is avail-
able in github1. In Section 6 we benchmark it under mul-
tiple representative workloads. In the vast majority of ex-
periments, it significantly outperforms existing concurrent
KV-maps that support scans. KiWi’s advantages are partic-
ularly pronounced in our target scenario with long scans in
the presence of concurrent puts, where it not only performs
all operations faster than the competitors [14, 15], but actu-
ally executes either updates or scans an order of magnitude
faster than every other solution supporting atomic scans. No-
tably, KiWi’s atomic scans are also two times faster than the
non-atomic ones offered by the Java Skiplist [6].

2. Related Work
Techniques. KiWi employs a host of techniques for ef-
ficient synchronization, many of which have been used in
similar contexts before. Multi-versioning [10] is a classical
database approach for allowing atomic scans in the presence
of updates, and has also been used in the context of transac-
tional memory [26]. In contrast to standard multi-versioning,
KiWi does not create a new version for each update, and
leaves version numbering to scans rather than updates.

1 https://github.com/sdimbsn/KiWi

Braginsky and Petrank used lock-free chunks for efficient
memory management in the context of non-blocking linked
lists [11] and B+trees [12]. However, these data structures
do not support atomic scans as KiWi does.

KiWi separates index maintenance from the core data
store, based on the observation that index updates are only
needed for efficiency and not for correctness, and hence can
be done lazily. This observation was previously leveraged,
e.g., for a concurrent skip list, where only the underlying
linked list is updated as part of the atomic operation and
other links are updated lazily [13, 23, 24, 35].

Concurrent maps supporting scans. Table 1 summa-
rizes the properties of state-of-the-art concurrent data struc-
tures that support scans, and compares them to KiWi. Snap-
Tree [14] and Ctrie [32] use lazy copy-on-write for cloning
the data structure in order to support snapshots. This ap-
proach severely hampers put operations when scans are ong-
ing, as confirmed by our empirical results for SnapTree,
which was shown to outperform Ctrie. Moreover, in Ctrie,
partial snapshots cannot be obtained.

Brown and Avni [15] introduced range queries for the
k-ary search tree [16]. Their scans are atomic and lock-
free, and outperform those of Ctrie and SnapTree in most
scenarios. However, each conflicting put restarts the scan,
degrading performance as scan sizes increase. Additionally,
k-ary tree is unabalnced; its performance plunges when keys
are inserted in sequential order (a common practical case).

Some techniques offer generic add-ons to support atomic
snapshot iterator in existing data structures [18, 31]. How-
ever, [31] supports only one scan at a time, and [18]’s
throughput is lower than k-ary tree’s under low contention.

Most concurrent key-value maps do not support atomic
scans in any way [6, 11, 12, 22, 27, 28, 30]. Standard it-
erators implemented on such data structures provide non-
atomic scans. Among these, we compare KiWi to the stan-
dard Java concurrent skip-list [19].

Distributed KV-maps Production systems often exploit
persistent KV-stores like Google’s Bigtable [17], Apache
HBase [3], and others [7, 8]. These technologies combine
on-disk indices for persistence with an in-memory KV-map
for real-time data acquisition. They often support atomic
scans, which can be non-blocking as long as they can be
served from RAM [20]. However, storage access is a princi-
pal consideration in such systems, which makes their design
different from that of in-memory stores as discussed herein.

MassTree [29] is a persistent B+-tree designed for high
concurrency on SMP machines. It is not directly comparable
to KiWi as it does not support atomic snapshots, which is
our key emphasis. Sowell et. al. [34] presented Minuet – a
distributed in-memory data store with snapshot support. In
that context, snapshot creation is relatively expensive, which
Minuet mitigates by sharing snapshots across queries.



scans performance
atomic multiple partial wait-free balanced fast puts

Ctrie [32] X X 7 7 X 7
SnapTree [14] X X X 7 X 7
k-ary tree [15] X X X 7 7 X
snapshot iterator [31] X 7 7 X X X
Java skiplist [6] 7 X X X X X
KiWi 4 4 4 4 4 4

Table 1: Comparison of concurrent data structures implementing scans. For range queries, support for multiple partial scans is
necessary. Fast puts do not hamper updates (e.g., by cloning nodes) when scans are ongoing.

Algorithm 1 KiWi chunk data structure.
immutable minKey .minimal key in chunk
array k of 〈key, ver, valPtr, next〉 .in-chunk linked list
array v of values .values stored in the list
kCounter, vCounter .end of allocated (full) prefixes
batchedIndex .end of batched prefix in k
.pending put array allowing scans and gets to help puts

array ppa[NUM THREADS] of 〈ver, idx〉
next .pointer to next chunk in chunk list
mark .indicates whether next is immutable
rebalance data 〈status, parent, ro〉 .rebalancing-related data

3. KiWi Algorithm
KiWi implements a concurrent ordered key-value map sup-
porting atomic (linearizable) get(key), put(key,value), and
scan(fromKey,toKey) operations. Its put operations are lock-
free, whereas get and scan are wait-free. A put with a non-
existent key creates a new KV-pair, and a put of the ⊥ value
removes the pair if the key exists.

The philosophy behind KiWi is to serve client operations
quickly, while deferring data structure optimizations to a
maintenance procedure that runs infrequently. The mainte-
nance procedure, rebalance, balances KiWi’s layout so as to
ensure fast access, and also eliminates obsolete information.

In Section 3.1 we explain how data is organized in KiWi.
Section 3.2 discusses how the different operations are imple-
mented atop this data structure in the common case, when no
maintenance is required. Section 3.3 focuses on rebalancing.

3.1 Data organization
Chunk-based data structure. Similarly to a B+tree, the
KiWi data structure is organized as a collection of large
blocks of contiguous key ranges, called chunks. Organizing
data in such chunks allows memory allocation/deallocation
to occur infrequently. It also makes the design cache-friendly
and appropriate for NUMA, where once a chunk is loaded
to local memory, access time to additional addresses within
the chunk is much shorter. This is particularly important
for scans, which KiWi seeks to optimize, since they access
contiguous key ranges, often residing in the same chunk.

The KiWi data layout is depicted in Figure 1, with one
chunk zoomed in. The chunk data stucture is described in
Algorithm 1.

KiWi’s chunks are under constant renewal, as the re-
balance process removes old chunks and replaces them
with new ones. It not only splits (over-utilized) and merges
(under-utilized) chunks as in a B+tree, but also improves
their internal organization, performs compaction by elimi-
nating obsolete data, and may involve any number of chunks.

In order to simplify concurrency control, however, we
do not organize chunks in a B+tree, but rather in a sorted
linked list. This eliminates the synchronization complexity
of multi-level splits and merges. Yet, to allow fast access, we
supplement the linked list with an auxiliary index that maps
keys to chunks; it may be organized in an arbitrary way (e.g.,
skip-list or search tree). Each chunk is indexed according to
the minimal key it holds, which is invariant throughout its
lifespan. (The minimal key of the first chunk in the list is
−∞.) The index supports a wait-free lookup method that
returns the indexed chunk mapped to the highest key that
does not exceed a given key. It further supports conditional
updates, which are explained in Section 3.3, as they are done
only as part of the rebalance procedure. Such updates are
lazy, and so the index may be inaccurate. Therefore, the
index-based search is supplemented by a traversal of the
chunk linked list.

Intra-chunk organization. Each chunk is organized as an
array-based linked list, sorted in increasing key order. KiWi
chunks hold two arrays – v with written values, and k with
the linked list. Each cell in k holds a key, a pointer valPtr
to a value in v, and the index of the cell in k that holds the
next key in the linked list. It also has a version number, as
we explain shortly. When a chunk is created (as a result of
rebalancing), some prefix (typically one half) of each array
contains data, and the suffix consists of empty entries for
future allocation.

The chunk’s full prefix is initialized as sorted, that is,
the linked-list successor of each cell is the ensuing cell in
k. The sorted prefix is called the chunk’s batched prefix,
and it can be searched efficiently using binary search. As
keys are added, the order in the remainder of the chunk is
not preserved, i.e., the batched prefix usually does not grow.
For example, when a key is inserted to the first free cell, it
creates a bypass in the sorted linked list, where some cell i
in the batched prefix points to the new cell, and the new cell
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Figure 1: KiWi data structure layout. In the zoomed in chunk (on the right), a pending put by the second thread is attempting
to add k[6] to the linked list with key 17 and version 4.

points to cell i + 1. We note that in case the insertion order
is random, inserted cells are most likely to be distributed
evenly in between the batched prefix cells, thus creating
fairly short bypasses. Given that the prefix and the remainder
are of similar sizes, the expected search time remains poly-
logarithmic. Nevertheless, in the worst-case, the search time
is linear in the size of the remainder of the chunk.

In order to support atomic scans, KiWi employs multi-
versioning, i.e., sometimes keeps the old version of a key in-
stead of overwriting it. To this end, KiWi maintains a global
version, GV, and tags each key-value pair with a version,
ver. Versions of a key are chained in the linked-list in de-
scending version order, so the most recent version is encoun-
tered first. The compaction process that occurs as part of
rebalancing eliminates obsolete versions. Unlike traditional
multi-versioning, KiWi creates new versions only as needed
for ongoing scans. This allows us to shift the overhead for
version management from updates, which are short and fre-
quent, to scans, which are typically long and therefore much
less frequent. Specifically, put operations continue to use the
same version (overwriting previous values for written keys,
if they exist) as long as no scan operation increases GV.

Coordination data structures. KiWi employs two data
structures for coordinating different operations. A global
pending scan array (PSA) tracks versions used by pending
scans for compaction purposes; each entry consists of a ver-
sion ver and a sequence number seq, as well as the scan’s
key range. A per-chunk pending put array (PPA) maps each
thread either to a cell in the chunk that the thread is cur-
rently attempting to put into and a corresponding version, or
〈⊥,⊥〉, indicating that the thread is currently not performing
a put. The purpose of the PPA will become evident below.

3.2 KiWi operations
Our algorithm makes use of atomic compare-and-swap –
CAS(x,old,new), fetch-and-increment – F&I(x), and fetch-
and-add – F&A(x,a) instructions for synchronizing access
to shared data; all impose memory fences. A pseudocode of
KiWi operations is given in Algorithm 2.

Helping puts. The interaction between put and scan op-
erations is somewhat involved. In a nutshell, a put uses the
current value of GV, whereas a scan begins by atomically
fetching-and-incrementing GV, causing all future puts to
write larger versions than the fetched one. Scan then uses
the fetched version, ver, as its scan time, i.e., it returns for
each scanned key the latest version that does not exceed ver.

However, a race may arise if put(key,val) reads a global
version equal to ver for its data and then stalls while a
concurrent scan obtains ver as its scan time and continues
to read key before the put writes val for key with ver. In this
example, val should be included in the scan (since its version
equals the scan time), but it is not (because it occurs late).

We overcome this scenario by having scans help pending
puts assign versions to values they write. To this end, puts
publish their existence in the PPA of the chunk where they
write, whereas scans call helpPendingPuts in each chunk
where they read, which checks the PPA and helps any rel-
evant pending put threads it encounters (lines 41–46). The
helping here is minimal – it consists of a single CAS that
assigns a version to the pending put (line 46). For example,
in Figure 2, the scan helps put(k1,a) by setting its version
to the current global version, namely 8. This orders the put
after the scan, so the scan may return the old value.

Since scans use version numbers in order to decide which
puts they take into account, the order of put operations is
determined by the order of their versions. For consistency,
gets also need to rely on version numbers. When a get(key)
encounters a pending put(key,v) with no version, it cannot
simply ignore the written value, because the put might end
up ordered earlier than the get. Gets therefore call helpPend-
ingPuts to help pending puts as scans do. This is depicted in
Figure 2, where the get must help put(k2,b) obtain a version,
because ignoring it would order the gets inconsistently with
the version order that would later be observed by the scan.

Put implementation. The put operation appears in the
left column of Algorithm 2. It consists of three phases: (1)
locate the target chunk and prepare a cell to insert with the
written value; (2) obtain a version while syncrhonizing with



Algorithm 2 KiWi operations – pseudocode for thread t.
1: procedure PUT(key, val)

.1. prepare cell to insert
2: locate target chunk C
3: if checkRebalance(C, key, val) then
4: return .required rebalance completed the put
5: j← F&A(C.vCounter, val.size) .allocate place for value
6: i← F&I(C.kCounter) .allocate cell in linked list
7: if j ≥ C.v.size ∨ i ≥ C.k.size then
8: if ¬rebalance(C, key, val) then put(key, val)
9: v[j]← val

10: k[i]← 〈key,⊥, j,⊥〉 .version and list connection not set yet
.2. get version via PPA

11: C.ppa[t].idx← i
12: gv← GV
13: CAS(C.ppa[t], 〈⊥, i 〉, 〈 gv, i 〉)
14: if C.ppa[t].ver = frozen then .C is being rebalanced
15: if ¬rebalance(C, key, val) then put(key, val)
16: C.k[i].ver← C.ppa[t].ver

.3. add k[i] to linked list
17: repeat
18: c← find(key, k[i].ver, C) .search linked list C.k
19: .use binary search up to C.batchedIndex
20: if c = ⊥ then .not found
21: link C.k[i] to the list using CAS
22: if CAS succeeded then break
23: else if c.valPtr = j’<j then .overwrite
24: CAS(c.valPtr, j’, j)
25: until c.valPtr ≥ j
26: C.ppa[t]← 〈⊥,⊥〉

27: procedure GET(key)
28: locate target chunk C
29: helpPendingPuts(C, key, key)
30: return findLatest(key,∞, C)

31: procedure SCAN(fromKey, toKey)
.1. obtain version - synchronize with rebalance via PSA

32: psa[t]← 〈?, seq, fromKey, toKey〉 .seq is thread-local
33: ver← F&I(GV)
34: CAS(psa[t], 〈?, seq, fromKey, toKey〉, 〈ver, seq, fromKey,

toKey〉)
35: ver← psa[t].ver

.2. scan relevant keys
36: for each chunk C in query range do
37: helpPendingPuts(C, fromKey, toKey)
38: for each key in query range do
39: return findLatest(key, ver, C)
40: psa[t]← 〈⊥, seq++, ⊥,⊥〉

41: procedure HELPPENDINGPUTS(C, fromKey, toKey)
42: for each entry e in C.ppa do
43: idx← e.idx
44: if C.k[idx].key ∈ [fromKey, toKey] then
45: gv← GV
46: CAS(e, 〈⊥, idx 〉, 〈 gv, idx 〉)

47: procedure FINDLATEST(key, ver, C)
48: search key in C.k and C.ppa
49: if found at least one cell with key and version ≤ver then
50: return one with highest version, break ties by valPtr
51: return ⊥

Figure 2: Example of scan operation enforcing order be-
tween puts: The scan assigns put(k1,a) a new version (8),
whereas put(k2,b) later completes with an old version (7).
We see that if get(k2) does not help put(k2,b), the gets see
puts in a different order than the scan.

concurrent scans, gets, and rebalances via the PPA; and (3)
connect the new cell to the linked list.

The first phase (lines 2–10) locates the target chunk C,
traversing the index and the linked list if needed. Later this
phase allocates space for the key and the variable-length
value, by increasing C’s array counters to the next available
indices i and j for k and v, resp. This is done using atomic
F&I and F&A, so in case of concurrent put operations, each
thread gets its own cells.

Before increasing i and j, put checks if rebalancing is
needed, because the chunk is full, imbalanced, or immutable,
as discussed in the next section. This is done by the proce-
dure checkRebalance given below, which returns false in
case no rebalance is needed, and otherwise completes (or
restarts) the put. After increasing i and j, put verifies that they
are not too large, and if so, proceeds to write values into k[i]
and v[j], without a version at this point; note that k[i] is not
yet connected to the linked list.

The second phase (lines 11–16) publishes i in the thread’s
entry in C’s PPA, and then uses CAS to set the version to
the current value of GV. The CAS may fail in two possible
ways. First, if the chunk is undergoing rebalancing, then the
reblanacing thread may have set the thread’s PPA version to
frozen. In this case, the put cannot proceed since the chunk
is deemed immutable. Instead, it invokes rebalance, and if
rebalance returns false indicating that it did not insert the
put’s key and value, the put restarts (lines 14–15). (Invoking
rebalance on a chunk that is already being rebalanced is done
for lock-freedom, given that the original rebalancing thread
may be stalled.) Second, a helping thread may have already
set the version; to account both for this case and for the case
CAS succeeds, put uses the version from the PPA, and copies
it to k[i] (line 16).

The third phase, (lines 17–25), adds k[i] to the linked list.
To find the insertion point, it first uses binary search on the



scan put rebalance
scan F&I GV – –
put CAS by version, then –

ppa[t].ver F&A vCounter
rebalance CAS CAS to frozen CAS

psa[t].ver ppa[t].ver rebalanceObj

Table 2: Atomic operations and rendevouz points determin-
ing order between KiWi procedures.

batched prefix and then traverses the remaining linked list. If
the linked list does not contain a cell with the same key and
version, then k[i] is linked to the list (line 21). Otherwise,
ties between two puts with the same key and version are
broken based on the indices of their allocated cells in v. If
the put that allocates cell j finds in the linked list a cell with
index j’ with the same key and version such that j’<j, it uses
CAS to replace that cell’s valPtr to point to v[j] (line 24). If
j’>j then the put does nothing, since its value has effectively
been overwritten. Note that in both cases some cell, either
j or j’, remains allocated but is not connected to the linked
list. Unconnected cells are compacted by the rebalancing
process. Finally, the PPA version is cleared (line 26).

Gets and scans. Gets and scans are presented in the right-
hand column in Algorithm 2. A get(key) begins by querying
the index for key, and then (if needed), traverses the linked-
list of chunks until the next chunk’s minKey exceeds key
(line 28). If there is a pending put to key that does not have a
version yet, (i.e., its version is ⊥), get attempts to help it by
setting its version to the current value of GV using CAS (line
46). (CAS may fail in case the put sets its own version or is
helped or frozen by another thread). It then calls findLatest()
to find the latest version of the searched key.

The findLatest() function (line 47) performs a binary
search on the batched prefix, and continues to traverse the
in-chunk linked list until it either finds key or finds that it
does not exist. In addition, findLatest() checks the PPA for
potential pending puts of the target key, ignoring entries with
no versions as these were added after the help. In case mul-
tiple versions of key exist, it returns the one with the highest
version. If a pending put has the same version for the sought
key as an entry in the linked list, then the one with the larger
valPtr is returned.

A scan first determines its scan time (lines 32–35). It
obtains a unique version via F&I of GV, and attempts to set it
as its scan time while synchronizing itself relative to helping
rebalance operations as described below.

It then reads all the keys in the relevant range (lines 36–
39) by traversing the list of chunks, and within each chunk,
proceeding as get does to help all pending puts and find the
latest version of each key.

Ordering operations. The order among concurrently ex-
ecuting KiWi procedures is determined by atomic hardware

operations (F&I, F&A, or CAS) on pertinent memory loca-
tions. Table 2 summarizes the rendevouz points for different
types of operations. For brevity, we omit gets from the table.

Each scan has a unique version. The order between con-
current scans is determined by the order in which they (or
the rebalance threads that help them) perform F&I on GV.
Scans (and gets) order themselves relative to a put by thread
t via ppa[t].ver in the chunk where the put occurs.

The order between puts that attempt to insert the same
key is determined by their versions, which reflects their order
wrt ongoing scans. Puts that have the same version, (i.e., the
order between them is not determined by scans), are ordered
according to the order in which they succeed to fetch-and-
add vCounter. Rebalance operations are discussed below.

3.3 Rebalancing
Section 3.3.1 discusses the life-cycle of a KiWi chunk, and
in particular, when it is rebalanced. Section 3.3.2 then walks
through the stages of the rebalance process.

3.3.1 Triggering rebalance and chunk life-cycle
We saw that put calls checkRebalance(C) in line 3 of Al-
gorithm 2 before adding a new key to C. This procedure
triggers rebalance(C) whenever C is full or otherwise un-
balanced, according to some specified rebalance policy; we
refer to C as the trigger chunk of the rebalance.

To address the immediate problem, KiWi could, in prin-
ciple, restrict itself to the trigger chunk: It can free up space
by compacting C, i.e., removing deleted values, values that
are no longer in the linked list because their keys have been
over-written, as well as values that pertain to old versions
that are not required by any active scan; if this does not suf-
fice (because all the information in C is needed), KiWi may
split the chunk. Furthermore, it can address the imbalance
by sorting the chunk.

The problem with this approach is that it may leave under-
utilized chunks in the data structure forever. KiWi improves
space utilization by allowing chunks to merge, or more gen-
erally, engaging a number of old chunks in the rebalance,
and replacing all of them with any number of new ones. The
chunks to engage are determined by the rebalance policy.

Rebalance clones the relevant data from all engaged
chunks into new chunks, and then replaces the engaged
chunks with the new ones in the data structure. Cloning
creates a window when the same data resides at two chunks
– new and old. In order for get and scan to be wait-free, the
chunks remain accessible for reading during this period. But
in order to avoid inconsistencies, both chunks (old and new)
are immutable throughout the window.

This defines a life cycle for chunks: they are created as
immutable infants by some parent trigger chunk C; they
become normal mutable chunks at the end of the rebal-
ance process; and finally, they become frozen (and again im-
mutable) when they are about to be replaced. (We assume
that a complementary garbage-collection mechanism even-



Algorithm 3 The checkRebalance procedure.
52: procedure CHECKREBALANCE(C, key, val)
53: if C.status=infant then
54: normalize(C.parent)
55: put(key, val)
56: return true
57: if C.vCounter ≥ C.v.size ∨ C.kCounter ≥ C.k.size ∨
58: C.status = frozen ∨ policy(C) then
59: if ¬rebalance(C, key, val) then put(key, val)
60: return true
61: return false

tually removes disconnected frozen chunks.) The chunk’s
status (infant, normal, or frozen), the pointer to parent, and
the pointer to rebalance object are part of the rebalance data
stored in the chunk (see Algorithm 1).

The checkRebalance(C) procedure is given in Algo-
rithm 3. It checks whether C is immutable, and if so, helps
complete the process that makes it immutable (C’s parent in
case C is an infant, and C in case it is frozen). The rebalance
procedure consists of two functions, rebalance and nor-
malize; in case the chunk’s parent is helped only the latter
is perfromed as explained below. In addition, if the chunk
is full or if the rebalance policy chooses to do so, it also
triggers rebalance on C. Note that put calls checkRebal-
ance before incrementing kCounter and vCounter in order
to avoid filling up infant chunks. The reblance procedure
takes the put’s key and value as parameters, and attempts to
piggyback the put on the reblanace, i.e., insert the key and
value to the newly created chunk. In case it fails, it returns
false, in which case the put is restarted.

The policy will typically choose to rebalanceC whenever
C is full or under-utilized, as well as when its batched prefix
becomes too small relative to the number of keys in C’s
linked list. In order to stagger rebalance attempts in case
of many insertions to the same chunk, the policy can make
probabilistic decisions: If a chunk is nearly full or somewhat
under-utilized or unbalanced, then the policy may flip a coin
to decide whether to invoke rebalance or not.

3.3.2 Rebalance stages
Rebalance proceeds in the following seven stages:

1. Engage – agree on the list of chunks to engage.
2. Freeze – make engaged chunks immutable.
3. Pick minimal version – to keep in compaction.
4. Build – create infant chunks to replace engaged ones.
5. Replace – swap new chunks for old ones in list.
6. Update index – unindex old chunks, index new ones.
7. Normalize – make the new chunks mutable.

If the first check of checkRebalance() decides to help re-
balance a chunk’s parent, then rebalance starts in stage 6,
since the chunk’s reachability implies that stage 5 is com-
plete. In other cases, (a frozen chunk or a new trigger chunk),
rebalance cycles through all seven stages. This is safe be-
cause all stages are idempotent, and ensures lock-freedom,

namely, progress in case the original rebalance stalls. The
first five stages are performend in the rebalance procedure,
whereas the last two are performed in normalize. Pseu-
docode for these operations is given in Algorithm 4. The two
procedures make use of thread-local variables Cf , Cn, and
last. The latter tracks the last chunk engaged in rebalancing,
whereas the first two hold pointers to the first and last new
chunks, respectively.

1. Engagement. Since multiple threads may simultane-
ously execute rebalance(C), they need to reach consensus
regarding the set of engaged chunks. The consensus is man-
aged via pointers from the chunks to a dedicated rebalance
object ro. Once a chunk is engaged in a rebalance it cannot
be engaged with another rebalance. The engaged chunks in a
particular rebalance always form a contiguous sector of the
chunks linked list. For simplicity, this sector always starts
from the trigger chunk forward, though in principle it is pos-
sible to grow the sector backwards from the trigger chunk
as well. A rebalance object holds pointers to two chunks,
first (the trigger chunk) and next (the next potential chunk
to engage in the rebalance). The engagement preserves the
following invariant:

INVARIANT 1. Consider a rebalance object ro. If ro.next6=⊥
then for every chunk C in the linked list from ro.first to the
chunk before ro.next, C.ro=ro.

Engagement begins by agreeing on the ro to use. This is
done by (1) creating a rebalance object referring to the trig-
ger chunk C, (2) attempting to set C.ro to the new rebalance
object via CAS, and (3) using the ro in C.ro. Note that the
latter was set by a successful CAS of some rebalance thread.
Next, we try to engage ensuing chunks in the list one by one.
In each iteration, we consult the policy whether to engage
the next chunk. We then use CAS to change ro.next to either
ro.next.next, or ⊥ indicating that it is time to stop engaging
chunks. We exit the loop when ro.next is ⊥, and then set the
local variable last to the last engaged chunk.

2. Freezing. Once the list of engaged chunks is finalized,
we freeze them so no data will be added to them while they
are being cloned. Recall that puts become visible to concur-
rent retrievals once they publish themselves in the chunk’s
PPA, and that before doing so, they check if the chunk is
frozen. However, we need to account for the scenario where
a chunk becomes frozen after put checks its status and be-
fore the put publishes itself in PPA. To this end, rebalance
traverses all PPA’s entries and attempts to set their versions
to frozen using CAS. If the CAS is successful, the put will
fail to assign itself a version (Algorithm 2, line 14). Other-
wise, the put has already assigned its version, and rebalance
can take it into account during cloning.

3. Determining the minimal read version and helping
scans. We need to clone all data versions that might still



Algorithm 4 KiWi’s rebalance operation.
62: procedure REBALANCE(C, put key, put val)

.1. engage
63: tmp← new rebalance object, with first=C, next=C.next
64: CAS(C.ro, ⊥, tmp)
65: ro← C.ro
66: last← C
67: while ro.next 6= ⊥ do
68: next← ro.next
69: if policy(next) then .try to engage next
70: CAS(next.ro, ⊥, ro)
71: if next.ro = ro then .engaged next
72: CAS(ro.next, next, next.next)
73: last← next
74: else
75: CAS(ro.next, next, ⊥)
76: else
77: CAS(ro.next, next, ⊥)

.search for the last concurrently engaged chunk
78: while last.next.ro = ro do
79: last← last.next

.2. freeze
80: for each chunk c from ro.first to last do
81: c.status← frozen
82: for each entry e in c.ppa do
83: idx← e.idx
84: CAS(e, 〈⊥, idx〉, 〈frozen, idx〉)

.3. pick minimal version
85: minVersion← GV
86: for each psa[t] = 〈ver, seq, from, to〉 do
87: if ro.first.minKey ≤ to ∧
88: last.next.minKey > from then
89: if ver=? then add 〈t, seq, from, to〉 to toHelp
90: else minVersion← min(minVersion, ver)
91: if toHelp 6= ∅ then
92: ver← F&I(GV)
93: for each 〈t, seq, from, to〉 ∈ toHelp do
94: CAS(psa[t], 〈?,seq,from,to〉, 〈ver,seq,from,to〉)
95: minVersion← min(minVersion, psa[t].ver)

.4. build
96: Cf ← Cn ← new chunk
97: with minKey=C.minKey, parent=C, status=infant

98: for each chunk Co from ro.first to last do
99: if Co.minKey ≤ put key < Co.next.minKey then
100: toPut← {〈put key, GV, put val〉}
101: else
102: toPut← ∅
103: for each k in Co.ppa ∪ Co.k ∪ toPut in ascending order do
104: if Cn is more than half full then
105: Cn.next← new chunk
106: with minKey=k, parent=C, status=infant
107: Cn ← Cn.next
108: for each version 〈 ver, val 〉 of k, in descending order do
109: if val = ⊥ then break .eliminate tombstones
110: insert 〈 k, ver, val 〉 to Cn

111: if ver <minVersion then break
.5. replace

112: do
113: Cn.next← last.next
114: while ¬ CAS(last.next+mark, Cn.next+false, Cn.next+true)
115: do
116: pred← C’s predecessor
117: if CAS(pred.next+mark, C+false, Cf+false) then .success
118: normalize(C)
119: return true
120: if pred.next.parent = C then .someone else succeeded
121: normalize(C)
122: return false
123: rebalance(pred, ⊥,⊥) .insertion failed, help predecessor
124: while true . and retry

125: procedure NORMALIZE(C)
.6. update index

126: for each chunk c from C.ro.first to last do
127: index.deleteConditional(c.minKey, c)
128: for each chunk c from Cf to Cn do
129: do
130: prev← index.loadPrev(c.minKey)
131: if c.frozen then break
132: while ¬ index.putConditional(c.minKey, prev, c)

.7. normalize
133: for each chunk c from Cf to Cn do
134: CAS(c.status, infant, normal)

be needed by scans. To this end, we compute minVersion,
the minimum read point among all active and future scans
– this is the smallest version among those published in PSA
and the current GV.

Since a scan cannot atomically obtain a scan time from
GV and publish it in PSA, rebalance cannot ignore scans
that have started but did not publish a version yet. We there-
fore use a helping mechanism: scan first publishes ? in PSA
(Algorithm 2, line 32) indicating its intent to obtain a ver-
sion, then fetches-and-increments the global version and
uses CAS to update the version from ? to the one it obtained.

Concurrent rebalance operations help scans install a ver-
sion in started entries; monotonically increasing counters are
used to prevent ABA races where an old rebalance “helps”
a new scan. Specifically, rebalance does the following: (1) it
scans the PSA for entries with ? whose range overlaps the
range covered by the engaged chunks; (2) if any are found,
it fetches-and-increments GV and reads its new version into

gv; (3) for every psa[t]= 〈?, n〉 entry found in (1), it attempts
to CAS psa[t] to 〈gv, n〉. Note that scan’s CAS (Algorithm 2,
line 34) might fail in case it is helped, but either way, it uses
the version written by some successful CAS (line 35).

4. Creating new chunks and completing the put. The
next stage creates new chunks to replace the engaged ones.
It traverses the list of engaged chunks from ro.first to last. In
each chunk, it collects data both from the intra-chunk linked
list and from the PPA. Additionally, the key and value of the
put that triggered the rebalance is included in the appropriate
chunk. Versions associated with deletions (tombstones) are
discarded along with all older versions of the same key.
All versions of a key that are older than the last version
that does not exceed minVersion can be safely discarded,
whereas newer versions are cloned into new chunks. New
chunks are created one at a time, as infants, with the trigger
chunk as their parent. Keys are added, in sorted order, to a



new chunk Cn until it is roughly half full, at which point a
new chunkC ′ is created andCn.next is set toC ′. (In case the
last chunk is too sparse, for example, only a quarter full, it is
discarded and its keys are moved to the penultimate chunk).
We assume here that the number of versions is much smaller
than the chunk size.

5. Data structure update. Next, rebalance attempts to in-
sert the new section into the linked list instead of the engaged
one. This involves two steps: First, the next pointer of the tail
chunk in the new section needs to take the value of the next
pointer in last. Second, the next pointer of the predecessor
of ro.first needs to be set to the head of the new chunks’ list.
In order to execute the two steps atomically, we do the fol-
lowing: (1) mark the next pointer in last as immutable; (2)
set the tail of the new chunk sector to its value; and (3) use
CAS to set the next pointer of the predecessor of ro.first.

If CAS succeeds, we return true. If CAS fails because
another rebalance (using the same rebalance object) has suc-
cessfully replaced the trigger chunk with a new one, we sim-
ply return false (indicating that the new key and value were
not added as part of the rebalance, and hence put should
restart) without taking any additional actions. But if CAS
fails because some other rebalance had marked the next
pointer as immutable (step (1) above), then we recursively
help that rebalance complete, and then re-attempt to insert
the new chunk sector to the list.

In the special case when the new list is empty (because
no data is kept), step (3) CASes the next pointer of the
predecessor of ro.first to the next pointer of last.

6. Index update. Since the new chunks are already acces-
sible via the linked list and the old chunks are already frozen,
the index update can be lazy, and updates of different chunks
can proceed without synchronization. Nevertheless, we need
to take into account races with old rebalance operations— a
thread that wakes up after being stalled must be prevented
from indexing a chunk that had already been supplanted.

To this end, we assume that the index supports a form
of semantic load-linked and store-conditional; specifically,
it provides the following API: (1) loadPrev(k) — returns
the indexed chunk mapped to the highest key that does not
exceed k; (2) deleteConditional(k,C) — removes key k only
if mapped to chunk C; and (3) putConditional(k,prev,C) —
maps k to C provided that the highest key in the index that
does not exceed k is mapped to prev. Such an index can be
implemented in non-blocking ways using low-level atomic
operations [12]; in our implementation, we instead use locks.

To index a new chunkC, we first call loadPrev(C.minKey),
then verify that C is not frozen, and if so, add it condition-
ally to the index. Since chunks are frozen before they are
unindexed, this check ensures that we do not re-index an
unindexed chunk. If the conditional put fails and yet the
chunk is not frozen, the put is retried. Index removals call
deleteConditional(C.minKey,C).

7. Normalization. Finally, the status of the new chunks is
set to normal, and put operations may begin to update them.
Though it is possible that old (removed) chunks are still
being accessed by old get and scan operations at this point,
these operations will be ordered before the new puts, so it
is acceptable for them to miss the added data. Once all such
old operations complete, the old chunks can be reclaimed.

4. Correctness
We now provide the key arguments for KiWi’s correctness.
Due to space considerations, we state the main lemmas with-
out proof, while a formal correctness proof is deferred to the
full version of the paper. We begin in Section 4.1 by defining
the model and correctness notion we seek to prove, and then
present the key safety arguments in Section 4.2. The liveness
proof is omitted for lack of space.

4.1 Model and Correctness Specification
We consider an asynchronous shared memory model [36],
where a finite number of threads execute memory opera-
tions on shared objects. High-level objects, such as a map,
are implemented using low-level memory objects support-
ing atomic read, write, and read-modify-write (e.g., CAS)
operations. High-level operations are invoked, then perform
a sequence of steps on low-level objects, and finally return.

Our correctness notion is linearizability, which intuitively
means that the object “appears to be” executing sequentially.
It is defined for a history, which is a sequence of operation
invoke and return steps, possibly by multiple threads. A his-
tory partially orders operations: operation op1 precedes op-
eration op2 in a history if op1’s return precedes op2’s invoke;
two operations that do not precede each other are concur-
rent. In a sequential history, there are no concurrent opera-
tions. An object is specified using a sequential specification,
which is the set of its allowed sequential histories. Roughly
speaking, a history σ is linearizable [25] if it has a sequen-
tial permutation that preserves σ’s precedence relation and
satisfies the object’s sequential specification.

KiWi implements a map offering put, get, and scan oper-
ations, and in its sequential specification, get and scan return
the latest value inserted by a put for each key in their ranges.

4.2 KiWi’s Linearizability
Proving KiWi is linearizable is accomplished by identifying,
for every operation in a given history, a linearization point
between its invoke and return steps, so that the operation
“appears to” occur atomically at this point. The linearization
point of operation op is denoted LP(op).

Puts. We saw above that puts in a chunk C are ordered
(lexicographically) according to their 〈v, j〉 pairs, where
〈v, i〉 is published in their PPA in phase 2 of the put, and
C.k[i].valPtr= j; this pair is called the full version of the
put. We note that in each chunk, the full versions are unique,
because threads obtain j using F&A. First, i is published in



ppa[t].idx (line 11) and then the location-version pair obtains
its final value by a successful CAS of ppa[t].ver, either by
the put (line 13) or by a helping thread (line 46). We refer to
a step publishing i in ppa[t].idx and to the step executing the
successful CAS as the put’s publish time and the full version
assignment time, resp., and say that the put assigned 〈v, j〉
for its key in C.

We note that each put assigns a full version at most once.
Once a put operation po for key k assigns its full version
in chunk C at time t, we can define its linearization point.
There are two options:

1. If at time t po’s full version 〈v, j〉 is the highest for k
in C, (among entries in C’s PPA and linked list), then
LP(po) is the last step reading v from GV before t.

2. Otherwise, let po′ be the put(k, ) operation that assigns
for k in C the smallest full version exceeding po’s before
time t. Then LP(po) is recursively defined to be LP(po′).
Note that po’s full version assignment time exceeds that
of po′, so the recursive definition does not induce cycles.

In case multiple puts are assigned to the same point, they are
linearized in increasing full version order.

While a chunk is accessible from the chunks list its key
range is well-defined. We say that key k is in the range of
chunk C if k ≥ C.minKey and k < C.next.minKey. C is
mutable if put operations can assign full version in C, oth-
erwise it is immutable. An invariant of the rebalance process
is that a chunk is immutable before it is accessible from the
chunks list and after the freezing stage is completed. In ad-
dition, at any point in time each key is covered by the range
of at most one mutable chunk. It is easy to show that a put
operation always lands at a mutable chunk with a range that
covers the key. Thus, rebalance operations divide puts of key
k into disjoint groups; one group per mutable epoch of each
chunk covering the key. The following lemma establishes the
order among linearization points of puts within one epoch.

LEMMA 4.1. Consider chunkC accessible as of time t0, key
k in the range of C, and an operation po =put(k, ) that
assigns 〈v, j〉 to C.ppa at time t. Then

1. LP(po) is after po allocates location j for its value and
before t.

2. LP(po) is a read step of GV that returns v.
3. LP(po) is after some operation po′ (possibly po, but not

necessarily) publishes for k to C where later po′ assigns
a full version equal to or greater than 〈v, j〉.

4. The linearization points of all operations that publish for
k to C preserve their full version order.

5. At time t0, the value published to k by the put with the
latest linearization point before t0 is associated with the
highest full version in C’s linked list.

Gets and scans. The most subtle linearization is of get op-
erations. A get operation go may land in a mutable or im-
mutable chunk. We need to linearize go before all concur-

rent puts that go misses while seeking the value. For a get
operation go for a key k in the range of chunk C, there are
three options:

1. If C is not accessible from the chunks list when go starts
traversing C’s PPA, then LP(go) is the last step in which
C is still accessible from the chunks list.

2. Else, if go does not find k in C then LP(go) is when go
starts traversing C’s PPA.

3. Else, let po be the put operation that inserts the value
returned by go. LP(go) is the latest between when go
starts traversing C’s PPA and immediately after LP(po).

The next lemma shows that in the third case no other put
writing to k is linearized after LP(po) and before LP(go).
The proof relies on Lemma 5.2 and the rebalance invariants.

LEMMA 4.2. Consider a get operation go retrieving the
value of key k from chunk C. Let t be the step in which
go starts traversing C’s PPA. Then:

1. If go does not find k in C, then for each operation po
publishing k in C, LP(po) is after t.

2. If go returns the value written by operation po, then
LP(go) is after LP(po), and for each po′ 6= po publishing
k in C, LP(po′) is either before LP(po) or after t.

Scans are linearized when GV is increased beyond their
read point, typically by their own F&I, and sometimes by a
helping rebalance. Lemma 5.2 helps to prove the following:

LEMMA 4.3. Consider a scan operation so that acquires
version v as its read point. For each key k in the range of
the scan, so returns the value of the put operation writing to
k that is linearized last before LP(so).

The definition of the linearization points of scans and
get operations imply that these operations are linearized be-
tween their invocation and return. Condition 1 of Lemma 5.2
implies the same for puts. It is easy to show that gets
and scans land in chunks that contain the saught keys in
their ranges. Combined with the rebalancing invariants,
Lemma 5.3 shows that get operations satisfy their sequen-
tial specification, and Lemma 5.4 proves that scans satisfy
their sequential specification. Hence we conclude that KiWi
implements a linearziable map.

———————————————-

5. Correctness
5.1 Model
We consider an asynchronous shared memory model [36],
where a finite number of threads interact via shared ob-
jects. Every thread executes a sequence of operations. An
operation’s execution consists of a sequence of primitive
steps, beginning with an invoke step, followed by atomic
accesses to shared objects, and ending with a return step.
Steps also modify the executing thread’s local variables. We



allow read and write steps, as well as atomic read-modify-
write steps, such as compare-and-swap (CAS), fetch-and-
increment (F&I) and fetch-and-add (F&A).

A configuration is an assignment of values to all shared
and local variables. A step takes the system from one config-
uration to another. In the initial configuration, each variable
holds its initial value.

An execution is an alternating sequence of configurations
and steps, C0, s1, . . . , si, Ci, . . ., C0 is an initial configura-
tion, and each configurationCi is the result of executing step
si on configuration Ci−1.

An operation op is pending in configuration C in a given
execution, if the thread executing op has yet taken the last
step of op in the execution leading to C. The interval of an
operation op is the execution interval that starts at the first
step of op and ends at the last step of op, if there is one, taken
by the thread executing op. If op is pending, then the interval
of op is the (possibly infinite) execution interval starting at
the first step of op. Two operations overlap if their intervals
overlap.

An execution is serial if no operations overlap; this means
that every operation is executed to completion before an-
other operation starts. Two executions are equivalent if every
thread in these executions issues the same operations in the
same order and gets the same result for each operation.

5.2 Safety
Proving KiWi is linearizable [25] is accomplished by iden-
tifying, for every operation, a linearization point inside its
interval, so that the operation appears to occur atomically at
this point. We show that get and scans return the same values
as in an equivalent serial execution defined by this lineariza-
tion.

While a put operation is pending, its entry in the ppa
contains the version of the operation, v, and the location
of its value, j. Paired, 〈v, j〉 is called the location-based
version of the operation. It is also stored in the cell the
put operation inserts or updates in the cell linked list. We
linearize put operations by the lexicographical order of their
location-based version; namely, 〈v′, j′〉 < 〈v, j〉 if v′ < v or
v′ = v and j′ < j. Scan operations are linearized when the
global version counter is increased beyond their read point.
The most subtle linearization is of get operations. We need
to make sure it is linearized before all the concurrent puts the
operation missed while seeking the value in the chunk. Next
we formally define the linearization points of each operation;
the linearization point of operation op is denoted LP(op).

Rebalance operations divide linearization points into
epochs: roughly, an epoch starts when a chunk changes
its status from infant to normal and ends when the chunk
freezes (freezing stage is completed). This is similar to the
freezing point used to define the linearization points in [12].
Therefore, we describe linearization points of put and get
operations in the context of a chunk. Scans are linearized in

a chunk-free context. We show a scan observes a consistent
view, even when traversing multiple chunks.

Consider chunk c, an operation op updates c, if there is
a step in which a version v is written into op’s entry in c’s
ppa. LetOP c

k be the set of put operations writing to k which
update c. A put operation op ∈ OP c

k first publishes in the
ppa the index of its key which holds the value index, j. Then
in step σ, v is written (with a successful CAS) in op’s entry
so it holds op’s location-based version 〈v, j〉.

The linearization point of op is derived from the state in
configuration C following σ. If in C each cell with key k
in the cell linked list and each entry with key k in the ppa
have location-based version that is lower than 〈v, j〉, then
LP(op) is defined to be the last read step of the global version
counter that returns v before σ. Otherwise, let op′ be the put
operation writing to k which published 〈v′, j′〉 in the ppa
before σ s.t. 〈v′, j′〉 is the minimal location-based version
which exceeds 〈v, j〉. LP(op) is the same as LP(op′); put
operations with the same linearization point are serialized
by their location-based version order.

For lack of space, the proofs of the following lemmas are
deferred to the full paper.

LEMMA 5.1. Consider chunk c spanning keys [kl, ku), which
changes its state from INFANT to NORMAL in step δ1 and
is engaged in a rebalance that completes the freezing stage
in step δ2.

1. All cells with key in [kl, ku) that where last added to and
not removed from the data structure before δ1 are in c’s
linked-list in δ1,

2. No put operation can publish its version in c’s ppa after
δ2.

We rely on Lemma 5.1 when proving the next Lemma.

LEMMA 5.2. Consider chunk c, key k and operation op in
OP c

k , which in step σ publishes 〈v, j〉 in c’s ppa. The fol-
lowing claims hold:

1. LP(op) is after op allocates the location j for its value
and before σ,

2. LP(op) is in a read step of the global version counter that
returns v,

3. LP(op) is after some operation inOP c
k (possibly op) with

location-based version equal or greater than 〈v, j〉 is
published in c’s ppa,

4. the linearization points of all operations inOP c
k preserve

their location-based version order.

Consider a get operation op reading key k that starts
traversing c’s ppa in step τ . If c is not accessible from the
chunks list in the configuration preceding τ , then LP(op) is
in the last step in which c is accessible from the chunks list.
Otherwise, c is accessible from the chunks list in the configu-
ration preceding τ . If op did not find the key in c then LP(op)
is τ . Otherwise, let opl be the put operation which inserted
the value returned by op. LP(op) is the latest between τ and



immediately after LP(opl). It can be inferred from the code
and the way linearization points of put operations are defined
that LP(op) is in the interval starting in τ and ending when
op reads the returned value.

The next lemma proves that no other put operation writ-
ing to k is linearized after LP(opl) and before LP(op). We
rely on Conditions 1, 3 and 4 of Lemma 5.2 to prove the
next Lemma.

LEMMA 5.3. Consider a get operation op retrieving the
value of key k from chunk c. Let τ be the step in which
op starts traversing the ppa. The following claims hold:

1. If op did not find the key in c, then for each operation
opm ∈ OP c

k , LP(opm) is after τ .
2. If op returns the value written by operation opl, then

LP(op) is after LP(opl), and for each operation opm ∈
OP c

k \ {opl}, LP(opm) is either before LP(opl) or after
τ .

Consider a scan operation op. LP(op) is the FAI step
which increases the global version counter and returns the
version number that is later set (with a successful CAS)
in op’s entry in the global psa. The F&I is done either by
the process executing the scan or a concurrent rebalance
operation which helps the scan acquire the version. Either
way it can be inferred from the use of aba counters, that
the F&I is done after the scan entry is published in psa,
and before the scan reads the version from psa. We rely on
Conditions 2 and 4 of Lemma 5.2 to prove the next Lemma.

LEMMA 5.4. Consider a scan operation op that acquires
version v as its read point. For each key k in the range of
the scan, op returns the value of the put operation writing to
k that is linearized last before LP(op).

The definition of the linearization points of scans and get
operations imply that these operations are linearized within
their execution intervals. Condition 1 of Lemma 5.2 implies
that each put operation is linearized within its execution
interval. Lemma 5.3 implies that get operations satisfy their
sequential specification, and Lemma 5.4 implies that scans
satisfy their sequential specification. Hence we conclude:

THEOREM 5.5. KiWi is linearizable.

5.3 Progress
In Appendix A.2 we prove that KiWi gets and scans are wait-
free, namely, in any execution, the operation itself completes
within a finite number of steps by its invoking thread. The
proof simply shows that the number of iterations is finite in
the loops in these operations. We further prove that KiWi
put operations are lock-free, namely, in any execution of the
operation some operation completes within a finite number
of steps by the invoking thread. The proof of this property is
more subtle. We show that while a put operation can execute
infinite number of rebalance and replace methods, some

operation (and in fact many operations) completed allocation
and made progress.

———————————————

6. Evaluation
6.1 Setup
Implementation. We implement KiWi in Java, using Doug
Lea’s concurrent skip-list implementation [6] for the index
with added locks to support conditional updates. The code
makes extensive use of efficient array copy methods [5].
KiWi’s chunk size is set to 1024.

The rebalance policy is tuned as follows: checkRebalance
invokes rebalance with probability 0.15 whenever the batched
prefix consists of less than 0.625 of the linked list. Rebalance
engages the next chunk whenever doing so will reduce the
number of chunks in the list. We did not implement the pig-
gybacking of puts on rebalance, and instead restart the put
after every rebalance. This does not violate lock-freedom
since the number of threads is much smaller than the chunk
size, hence it is impossible for pending puts to fill it up.

Methodology. We leverage the popular synchrobench mi-
crobenchmark [21] to exercise a variety of workloads. The
hardware platform features four Intel Xeon E5-4650 8-core
CPUs. Every experiment starts with 20 seconds of warmup
– inserts and deletes of random keys – to let the HotSpot
compiler optimizations take effect. It then runs 10 iterations,
5 seconds each, and averages the results. An iteration fills
the map with random (integer, integer) pairs, then exercises
some workload. Most experiments start from 1M pairs, ex-
cept those focusing on high scalability that start from 10M.

Competition. We compare KiWi to Java implementa-
tions of three concurrent KV-maps: (1) the traditional skip-
list [6] which does not provide linearizable scan semantics,
(2) SnapTree[14]2, and (3) k-ary tree [15]3. For the latter, we
use the optimal configuration described in [15] with k = 64.

6.2 Results
Basic scenarios: get, put, and scan. We first focus on three
simple workloads: (1) get-only (random reads), (2) put-only
(random writes, half inserts/updates and half deletes), and
(3) scan-only (sequential reads of 32K keys, each starting
from a random lower bound).

Figure 3 depicts throughput scalability with the number
of worker threads. In get-only scenarios (Figure 3(a)), KiWi
outperforms the other algorithms by 1.25x to 2.5x. We ex-
plain this by the NUMA- and cache-friendly locality of ac-
cess in its intra-chunk binary search. Under put-only work-
loads (Figure 3(b)), it also performs well, thanks to avoiding
version manipulation. SnapTree, which is optimized for ran-
dom writes, is approximately 10% faster than KiWi with 32

2https://github.com/nbronson/snaptree.
3http://www.cs.toronto.edu/˜tabrown/kstrq/
LockFreeKSTRQ.java.

https://github.com/nbronson/snaptree
http://www.cs.toronto.edu/~tabrown/kstrq/LockFreeKSTRQ.java
http://www.cs.toronto.edu/~tabrown/kstrq/LockFreeKSTRQ.java
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threads. Note that in general, KiWi’s gets are faster than its
puts because the latter occasionally incur rebalancing.

KiWi excels in scan performance (Figure 3(c)). For exam-
ple, with 32 threads, it exceeds its closest competitor, k-ary
tree, by over 40%. Here too, KiWi’s advantage stems from
high locality of access while scanning big chunks.

Concurrent scans and puts. We now turn to the scenario
that combines analytics (scan operations) with real-time up-
dates (put operations). This is the primary use case that moti-
vated the design principles behind KiWi. Half of the threads
perform scans, whereas the second half performs puts.

Figure 4(a) depicts scan throughput scalability with the
number of threads while scanning ranges of 32K keys. Fig-
ure 4(b) depicts the throughput for 16 scan threads with vary-
ing range sizes. Note that for long scans, k-ary tree’s perfor-
mance deteriorates under contention. This happens because
k-ary tree restarts the scan every time a put conflicts with it
– i.e., puts make progress but scans get starved. For large
ranges, SnapTree has the second-fastest scans because it
shared-locks the scanned ranges in advance and iterates un-
obstructed. Note that KiWi’s throughput slightly decreases
when the range is particularly big because it takes longer to
collect redundant versions, and therefore the scan has to sift
through more data. Figure 4(c) depicts similar phenomena
for a 10M-key dataset. SnapTree’s competitive scan perfor-
mance comes at the expense of puts, since its locking ap-
proach starves concurrent updates. Figures 4(d-f) illustrate
this behavior – the latter for a 10M-key dataset.

We study the memory footprints of the solutions in this
scenario. We focus on 32-key scans – a setting in which the
throughput achieved by all the algorithms except SnapTree
is similar. Figure 5 depicts the JVM memory-in-use metric
immediately after a full garbage collection that cleans up all
the unused objects, averaged across 50 data points. KiWi
is on par with k-ary tree and the Java skiplist except with
maximal parallelism (16 put threads), in which it consumes
20% more RAM due to intensive version management.

Ordered workload. As a balanced data structure, KiWi
provides good performance on non-random workloads. We
experiment with a monotonically ordered stream of keys.
KiWi achieves a throughput similar to the previous exper-
iments. In contrast, k-ary tree’s maximal put throughput in
this setting is 730 times slower – approximately 13.6K oper-
ations/sec vs KiWi’s 9.98M.

7. Discussion
We presented KiWi, a KV-map tailored for real-time ana-
lytics applications. KiWi is the first concurrent KV-map to
support high-performance atomic scans simultaneously with
real-time updates of the data. In contrast to traditional ap-
proaches, KiWi shifts the synchronization overhead from
puts to scans, and offers lock-free puts and wait-free gets
and scans. We demonstrated KiWi’s significant performance
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Figure 5: RAM use with parallel scans and puts, 1M dataset.

gains over state-of-the-art KV-map implementations that
support atomic scans.
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A. Proof Appendix
A.1 Safety
Proof of Lemma 5.1.

Proof of Lemma 5.2. We consider an execution interval
π which spans the execution intervals of all operations in
OP c

k . Denote by σ1, σ2, . . . the finite sequence of steps of
these operations writing versions v1, v2, . . . into entries in
the ppa by their order in π, where σi is a step of operation
opi; the locations each operation allocated for its value are
j1, j2, . . ., respectively.

The proof is by induction on i. For the base case, we
consider op1. It is the first to publish its version in the ppa.
Lemma ?? implies that all the cells within the chunk range
that were inserted into an earlier chunk were added to the
chunk’s cell linked list by a rebalance operation that com-
pleted before op1 started. Therefore, these cells have smaller
location-based versions and op1 is linearized in the last read
step of the global version counter that returns v1 before σ1.
Clearly this step is after the put operation is published, and
specifically after j1 is allocated, and the lemma holds.

For the induction step, assume the lemma holds for op-
erations op1, . . . opi−1. We prove the lemma for operation
opi by case analysis. If opi’s location-based version 〈vi, ji〉
is maximal in C (with respect to all linked cells and pub-
lished entries with the same key) then LP(opi) is the last
read retrieving vi from the global counter. This step is done
after the put is published in the ppa (which is after ji is allo-
cated) and before σi, and Conditions 1-3 of the lemma hold.
In addition, by the induction hypothesis, linearization points
of op1, . . . opi−1 preserve their location-based version order.
They are all linearized in read steps of the global version
counter returning their versions, specifically not later than
LP(opi)—the latest read step returning the maximal version,
hence Condition 4 holds as well.

Otherwise, another operation opl published 〈vl, jl〉 in σl
before σi, s.t. 〈vl, jl〉 > 〈vi, ji〉. By definition, opi is lin-
earized exactly at the point (LP(opl)) which preserves the
location-based version order of the operations, and Condi-
tion 4 holds. By Condition 3 of the induction hypothesis,
LP(opl) is after an operation in OP c

k with location-based
version equal or greater than 〈vl, jl〉 is published in c’s ppa.
Since 〈vl, jl〉 > 〈vi, ji〉, Condition 3 also holds.



It is left to discuss Conditions 1 and 2. Consider first
the case where vl > vi. By Condition 2 of the induction
hypothesis LP(opl) is in a read step of the global version
counter that occurred after it is set to vl. opi eventually
obtains the version vi which is smaller than vl. This implies
opi published the operation in the ppa before the version
counter is set to vl, and LP(opi) satisfies Conditions 1 and 2.
If vl = vi and jl > ji then opl allocated jl after opi allocated
ji. By Condition 1 of the induction hypothesis, LP(opl) is
after opl allocated jl and before σl, and LP(opi) satisfies
Conditions 1 and 2.

Proof of Lemma 5.3. It can be inferred from findLatest
that op returns the value with the maximal location-based
version observed by op in the ppa and in the cell linked
list. In addition, it can be inferred from the code that put
operations update values in-place in the cell linked list only
if its location-based version is higher than the location-based
version of the cell in the list.

First, assume op did not find the key in c. By the observa-
tions above, all operations in OP c

k are published in the ppa
after τ . Otherwise, op should have observed them either in
the ppa or in the linked list. By Condition 3 of Lemma 5.2,
all operations in OP c

k are linearized after τ , and Condition 1
holds.

Next, assume op returns the value written by operation
opl; the location-based version of opl is 〈vl, jl〉.

If c is not accessible from the chunks list in the configu-
ration preceding τ , then LP(op) is in the last step in which c
is accessible from the chunks list. By Claim 2 of Lemma 5.1
no put operation can publish its location-based version in c’s
ppa after τ , and by Condition 1 of Lemma 5.2 LP(op) is af-
ter LP(opl). Otherwise, it is clear by definition that LP(op) is
after LP(opl).

Consider an operation opm ∈ OP \ {opl} with location-
based version 〈vm, jm〉. By Condition 4 of Lemma 5.2, if
〈vm, jm〉 < 〈vl, jl〉 then LP(opm) is before LP(opl). It is
left to show that if 〈vm, jm〉 > 〈vl, jl〉 then LP(opm) is after
τ . By the observations above, all operations opm ∈ OP c

k \
{opl} with location-based version 〈vm, jm〉 > 〈vl, jl〉 are
published in the ppa after τ , and hence are not observed by
op. Condition 3 of Lemma 5.2 implies that these operations
are linearized after at least one of them is published in the
ppa, hence Condition 2 also holds.

Proof of Lemma 5.4. It can be inferred from findLatest
that for each key k in the range of the scan, op returns the
maximal location-based version of k that does not exceed
the scan read point observed by op in the ppa and in the cell
linked list. In addition, it can be inferred from the code that
put operations update values in-place in the cell linked list
only if its location-based version is higher than the location-
based version of the cell in the list.

Consider a put operation opm that writes to a key in the
range of the scan but is not observed by op. If opm acquires

version that is less than v then it acquired a version before
the scan increased the global version counter. Since op did
not observe opm in the ppa, opm completed before op read
the entry in the ppa, and since op did not observe opm in the
linked list, then the location-based version of the cell with
key k already in the linked list is higher than the location-
based version of opm. By Condition 4 of Lemma 5.2, opm is
linearized before the put operation writing the value returned
by the scan.

Finally, by Condition 2 of Lemma 5.2 all put operations
that are not observed by op and acquire version that is greater
than v are linearized after LP(op).

A.2 Progress
We now show that get and scan operations are wait-free, and
put operations are lock-free.

We say that a sequence πs is a sub-execution, if πs is a
suffix (or a prefix) of an execution. We say that thread t is
running in a sub-execution πs, if at least one step in πs is
executed by thread t. Given two keys K1 and K2, we write
| K2 −K1 | to denote the number of possible keys between
K1 and K2 (notice that | K2 −K1 | is always a finite
number because each key is stored in a bounded number of
bytes). Given a chunk X , we write min(X) to denote the
minimal key in X (as mentioned before, min(X) is never
changed during the lifetime of X).

LEMMA A.1. Let π = C0, s1, C1, . . . , si, Ci, . . . be an exe-
cution. Let X and Y be two chunks in configuration Ci such
that Y = X.next. For any configuration Cj such that j ≥ i
we have min(X) < min(Y ) in Cj .

Proof The algorithm writes the address of Y in X.next
only if min(X) < min(Y ) (this happens either at line
22 of the function Kiwi::Replace, or within the function
balance()). Since min(X) and min(Y ) are never changed,
min(X) < min(Y ) in any Cj such that j ≥ i.

LEMMA A.2. The function get is wait-free.

Proof We prove that get is wait-free by showing that the
functions Kiwi::FindChunk and Chunk::Find are wait-free.

The function Kiwi::FindChunk has a single loop: we
write nexti to denote the value of variable next at the begin-
ning of the i-th iteration of the loop. Because of Lemma A.1,
min(nexti) < min(nexti+1). Hence the loop terminates
after at most | key −min(next1) | iterations. Since all the
functions invoked by Kiwi::FindChunk are wait-free, each
invocation of Kiwi::FindChunk by thread t completes within
a finite number of steps by t.

The function Chunk::Find invokes the functions Chunk::FindInPendingList
and Chunk::FindInCellList. The loop in Chunk::FindInPendingList
completes after a constant number of iterations. The func-
tion Chunk::FindInCellList goes over the chunk’s link-list
exactly once (this link-list has at mostM cells). Hence, each



invocation of Chunk::Find by thread t completes within a
finite number of steps by t.

LEMMA A.3. The function scan is wait-free.

Proof All functions invoked by scan are wait-free. It is
sufficient to show that the loops in scan have a finite number
of iterations.

The function scan has two nested loops: we write Le

to denote the external loop (begins at line 10), and Li to
denote the internal loop (begins at line 12). Let keyi be the
value of variable key at the end of the i-th iteration of Le.
Each keyi is equal to the minimal key of the chunk which
is handled by iteration i + 1 (this chunk is pointed by the
variable chunk). Because of Lemma A.1, if Le has (at least)
i + 1 iterations then keyi < keyi+1. Hence, Le has at most
| maxKey −minKey | iterations.

The loop Li goes over the link-list of a chunk (this link-
list has at most M elements), hence Li has at most M
iterations.

Therefore, each invocation of scan by thread t completes
within a finite number of steps by t.

LEMMA A.4. The function put is lock-free.

Proof We prove by contradiction. Assume that put is not
lock-free. Hence there exists an infinite execution π =
C0, s1, C1, . . . such that after configuration Ck0 (k0 ≥ 0)
no operation completes and no new operation is invoked. We
have already shown that get and scan are wait-free, therefore
there exists configuration Ck1 in π (k0 ≤ k1) such that after
Ck1 all the running threads execute put operations.

We write t : X .allocate to denote an invocation of allo-
cate on chunkX by thread t (allocate is invoked by function
put at line 6). We say that invocation t:X .allocate is success-
ful if it returns a reference to a valid cell (i.e., it returns a
non-null value).

Consider an execution of the loop in function put by
thread t. If t : X .allocate is not successful at iteration
i + 1 (i ≥ 1) of t , then at iteration i the invocation of
t : Y .allocate is also not successful. Hence thread t invokes
Rebalance(Y ) at the end of iteration i. Therefore Y 6= X
and chunk X has been added to kiwi (at some point) during
iterations i and i + 1 of t (when a chunk is added to kiwi,
this chunk is not full). Therefore another thread t′ 6= t
successfully invoked t′ : X .allocate (at some point) during
iterations i and i + 1 of t (otherwise t : X .allocate should
be successful). Since a thread do not start new iteration of
this loop after a successful invocation of allocate (see lines
6–9 in put), we know that there exists configuration Ck2 in
π (k1 ≤ k2) such that: after Ck2 the put operations do not
start new iterations of this loop.

Since allocate is wait-free, there exists configuration Ck3

in π (k2 ≤ k3) such that no thread executes allocate after
Ck3. Hence, no chunk becomes full in π after configuration
Ck3.

In the following paragraphs we focus on the functions
Kiwi::Rebalance and Kiwi::Replace. Notice that Kiwi::Rebalance
calls to Kiwi::Replace; and that Kiwi::Replace recursively
calls to Kiwi::Rebalance in line 20. An invocation of Kiwi::Rebalance
on chunk X removes X from kiwi: hence for each thread t
and chunk X , Rebalance(X) may be invoked at most once
by t.

Let Nputs be the number of put operations after configu-
ration Ck3. Let NE be the maximal number of new chunks
created by an invocation of balance() (in our implemen-
tation NE = 4). Since after Ck3 no chunk may become
full, at most Nputs × NE new chunks may be created after
Ck3. Therefore, after configuration Ck3 the threads invoke
function Kiwi::Rebalance a finite number of times. Hence
there exists a configuration Ck4 in π (k3 ≤ k4) such that
Kiwi::Rebalance is not invoked after Ck4.

Since the other functions invoked by put are lock-free4,
there exists a configuration Ck5 in π (k4 ≤ k5) such
that all the running threads after Ck5 execute the loop in
Kiwi::Replace (and this loop is never terminated). Hence,
the CAS at line 22 always fails after configuration Ck5 (i.e.,
no CAS updates shared memory after Ck5). This is a contra-
diction, because the CAS at line 22 may fail only if shared
memory has been updated since the beginning of the itera-
tion.

4 The other functions invoked by put, Kiwi::Rebalance and Kiwi::Replace
are lock-free: we assume that index.replace is lock-free, the other ones are
trivially wait-free.


	Introduction
	Related Work
	KiWi Algorithm
	Data organization
	KiWi operations
	Rebalancing
	Triggering rebalance and chunk life-cycle
	Rebalance stages


	Correctness
	Model and Correctness Specification
	KiWi's Linearizability

	Correctness
	Model
	Safety
	Progress

	Evaluation
	Setup
	Results

	Discussion
	Proof Appendix
	Safety
	Progress


