
Promoting Relevant Results in Time-Ranked Mail Search

David Carmel, Liane Lewin-Eytan, Alex Libov, Yoelle Maarek, Ariel Raviv
Yahoo Research, Park MATAM, Haifa 31905, Israel

{dcarmel, liane, alibov}@yahoo-inc.com, yoelle@yahoo.com,arielr@yahoo-inc.com

ABSTRACT
Mail search has traditionally served time-ranked results, even
if it has been shown that relevance ranking provides higher
retrieval quality on average. Some Web mail services have
recently started to provide relevance ranking options such
as the relevance toggle in the search results page of Yahoo
Mail, or the “top results” section in Inbox by Gmail. Yet,
ranking results by relevance is not accepted by all, either
in mail search, or in in other domains such as social me-
dia, where it has even triggered some public outcry. Given
the sensitivity of the topic, we propose here to investigate
a mixed approach of promoting the most relevant results,
to which we refer as “heroes”, on top of time-ranked results.
We argue that this approach represents a good compromise
to mail searchers, supporting on one hand the time sorted
paradigm they are familiar with, while being almost as effec-
tive as full relevance ranking view that Web mail users seem
to be reluctant to adopt. We describe three hero-selection
algorithms we have devised and the associated experiments
we have conducted in Yahoo mail. We measure retrieval
success via two metrics: MRR (Mean Reciprocal Rank) and
Success@k, and verify agreement between these metrics and
users’ direct feedback. We demonstrate that supplementing
time-sorted results with hero results leads to a higher MRR
than the traditional time-sorted view. We additionally show
that MRR better reflects users’ perception of quality than
Success@k. Finally, we report on online results following the
successful launch of one of our hero-selection algorithms for
all Yahoo enterprise mail users and a few million Yahoo Web
mail users.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]

Keywords: Mail Search, Rank-by-time, Heroes

1. INTRODUCTION
Mail, the most traditional medium for digital communi-

cation, sees its traffic continuously increasing, mostly due to
the increase in volume of machine-generated messages [14].

©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052659

.

As inboxes keep growing, and most users have been shown
never to clean up their inboxes [9], search capabilities be-
come even more critical. Unfortunately, mail search has not
observed the same pace of progress as Web search and is still
perceived as being somehow broken [13].

Some Web mail systems have recently started to offer op-
tions for sorting results by relevance, in the hope to address
this issue. One example is the Date/Relevance toggle in the
Search Results view of Yahoo Mail, and another one is the
“top results” section1 that displays a few relevant results on
top of the usual chronological list in the “Inbox by Gmail”
variant of Gmail. Yet, these examples are rather the excep-
tions than the rule, and most mail search systems still rank
results by time.

One possible interpretation for this somehow surprising
anachronism, is that, like in desktop search, users expect
perfect recall as they are trying to re-find “stuff they’ve
seen” [11]. To this effect, they apply different search strate-
gies. In some cases, they formulate very clear multiple-word
queries, and in many cases they “play it safe”, entering only
a contact name and then exhaustively browsing search re-
sults in order to make sure they are not missing the relevant
messages, [4]. While on average, ranking by relevance is still
superior on average as demonstrated in [3], it might frustrate
the searchers who are used to their own search strategy, and
even strengthen the perception that mail search is broken.

Users preferring chronological ranking is not a phenomenon
unique to mail. In social media for instance, some users
strongly objected relevance ranking in the Twitter timeline2

and more recently in Facebook and Instagram3.
We propose here to re-build the user’s trust in mail search

by offering a mixed approach, that offers a combination of
relevance and time-sorted results for easier adoption. We
study several algorithms for adding a few most relevant re-
sults, to which we refer as “heroes”, on top of the traditional
time sorted view, as illustrated in Figure 1. One key novelty
of our approach consists of optimizing the quality of results
in a fixed display window of size k, where the first h heroes
are the top relevant results and k − h remaining results are
the top time results. Another benefit of this approach is
that the k−h top time results transparently merge into the

1http://gmailblog.blogspot.co.il/2016/01/
inbox-by-gmail-find-answers-even-faster.html
2http://www.theguardian.com/technology/2015/dec/
09/twitter-courts-dislike-by-reordering-tweets-on-relevance
3http://www.latimes.com/business/technology/
la-fi-tn-instagram-feed-20160315-story.html

rest of the traditional time sorted results, allowing the users
to fall back into their regular search paradigm.

Figure 1: Display window of size 6, where 2 heroes
are presented on top of the time ranked list.

We discuss three distinct algorithms for identifying such
heroes and evaluate the quality of the top-k results, where
the h first results are served by the relevance-based rank-
ing algorithm deployed today in Yahoo Mail search back-
end [3], and the remaining k − h are the most recent re-
sults. These three algorithms mostly differ in terms of (1)
allowing/forbidding duplication of results between time and
relevance in the top k results, and (2) using either a fixed
number H or a variable number h ≤ H of heroes. We also
consider two measures of quality for evaluation, Mean Re-
ciprocal Rank (MRR) and Success@k4 in a series of offline
and online experiments.

The main contributions of this work are two-fold: (1) we
present the first public study, to the best of our knowledge,
investigating the benefits of augmenting time-ranked results
with relevant results and,(2) we introduce and evaluate vari-
ous algorithms for promoting hero results on the top of time
results, optimizing the top-k display window that contains
both heroes and time results for various values of k.

The rest of this paper is organized as follows. Section 2
covers some related work. Section 3 describes a large-scale
analysis performed over a large Yahoo mail query log. Sec-
tion 4 introduces our three hero selection algorithms, which
are then evaluated in Section 5. Section 6 details a man-
ual evaluation conducted by professionally trained Yahoo
evaluators. Finally, Section 7 presents our online evaluation
following the launch of one of our hero selection algorithms
in Yahoo mail. We conclude in Section 8 by discussing the
counter-intuitive results we observed in terms of tolerance
for duplicates in search results, as well as the alignment of
results across all evaluation methods.

2. RELATED WORK
Incorporating time-based considerations into relevance-

based ranking has been extensively studied, typically by
adding time-based features into the relevance ranking model
so as to favor recent documents (e.g., [16, 10, 12, 5]). In the
context of mail search, Carmel et al. [3] followed this direc-
tion, considering not only freshness features but also mail-
specific features such as user actions on a given message.
While many features significantly contributed to the overall
ranking, the time-based features were found to be the most
significant in determining the message score.

4Commonly defined as the relative number of queries for
which the clicked message appears in the top-k results.

Another direction for integrating document freshness into
the relevance model predicts the time sensitivity of the query
(e.g., [15, 8, 7]). For time-sensitive queries, such as those
pertaining to breaking news, older result candidates, which
become stale fast, should be penalized with lower relevance
scores. In this line of works, queries are first classified ac-
cording to their time sensitivity. Then, document freshness
features are boosted for time-sensitive queries, and ignored
or demoted for atemporal queries.

Another form of displaying search results that is related to
our work allows the user to rank the results according to dif-
ferent criteria (recency, relevance, authority, etc.) [6]. This
view allows users to sort results according to their needs.
Several Web mail search systems (e.g., Yahoo mail) follow
this model and allow users to re-rank the default time-based
results by relevance. However, this form requires further
user interaction with the search results, and therefore the
default ranking criterion plays an important role as expe-
rience shows that most users stick with the default rank
and do not bother to re-rank the results even when bene-
ficial [3]. In contrast, our hero-based approach is designed
for discoverability, saving the need for additional re-ranking
interaction.

Time-based ranking is also popular in social media sites
such as Twitter, in spite of that content exploration requires
substantial effort of users who sequentially scan the streams
of tweets. A great deal of work was focused on develop-
ing relevance-based ranking models for Twitter search (e.g.,
[17]), however, relevance ranking of the stream of tweets has
not been welcomed by Twitter users and has still not been
integrated into the product. Bernstein et al. [2] presented
an interface which categorizes the tweets into topics and pro-
vides access to the tweet classes by means of tag clouds. Abel
et al. [1] enriched Twitter rank-by-time by faceted search,
inferring facets such as locations and persons of individual
messages, thus allowing users to narrow the search results
into a specific facet.

3. MAIL RANKING ANALYSIS
We use here a dataset of 100K queries randomly selected

over a period of one month of Yahoo Web mail. We used
the same type of offline analysis conducted by some of the
authors of this work, as described in [3]. Namely we as-
sociated each query with the result message clicked by the
searcher and obtained MRR scores5 of 0.526 for simulated
relevance ranking as compared to 0.37 for the time ranking
approach, that was in production in Yahoo Mail at the time.
We computed the relevance ranking by using the relevance-
based scoring function presented in [3], and verified again
the superiority of relevance over time ranking, on a much
larger dataset than the 10K log used in [3].

Additionally, we measured the fraction of queries for which
the clicked message appeared in the top-k results (Success@k)
or not (denoted by Failure@k) for k ∈ {6, 10} in each ranking
approach, as detailed in Table 1. The columns correspond to
the performance of time ranking, while the rows correspond
to relevance ranking. Each inner cell in the tablerepresents
the fraction of the queries where both time and relevance

5Note that due to the offline nature of the analysis, we did
not include unsuccessful queries and thus obtained higher
MRR than what we will observe in our online analyses in
Section 7.

rankings perform according to their respective column and
row. For example, when considering the top six results, we
see that in 9.7% of the cases time ranking fails while rel-
evance succeeds. The “Overall” columns/rows sum up the
cases where either time or relevance always succeeds or fails.

Time Success@6 Failure@6 Time-Overall
Relevance
Success@6 66.2% 9.7% 75.9%
Failure@6 5% 19.1% 24.1%
Rel-Overall 71.2% 28.8% 100%

Time Success@10 Failure@10 Time-Overall
Relevance
Success@10 76.8% 7.5% 84.3%
Failure@10 3.7% 12% 15.7%
Rel-Overall 80.5% 19.5 100%

Table 1: Fractions of queries according to the occur-
rence of the clicked message in the top-k results, for
k ∈ {6, 10}, ranked by time and by relevance.

We see that, when considering the top ten results, rel-
evance ranking succeeds in 7.5% (in bold) of the cases in
which time ranking fails, and conversely time ranking suc-
ceeds in 3.7% (in bold) of the cases, for which relevance fails.
In other words, there exist results that one ranking paradigm
returns while the other misses them. Our interpretation here
is that users will use different strategies in mail search de-
pending on their intent and trust in the system. As discussed
in [4], about 55% of the queries are contact queries, where
the user’s search strategy is to simply enter a contact name
without additional information, and then scan all messages
received or sent by the contact in order to improve recall.
In such cases the time ranking view will help him browse
systematically. This encourages us to investigate a mixed
approach that supports both search ranking paradigms, as
discussed in the next section.

4. HERO SELECTION ALGORITHMS
Given the variety of existing devices, a key parameter is

the number of search results, noted by k, that are shown
“above the fold”, without scrolling. The top-k results pre-
sented on the display window consist of both hero results,
noted by HList, where |HList| = h, and the head of the
time-sorted results, noted by TList, (|TList| = k − h), as
illustrated in Figure 1. Our task here is to identify h ≤ H
hero results; we impose that H < k.

The size of the display window can significantly vary ac-
cording to the device, from smart-phones to large monitors.
Note that TList is in fact the head of the original Time
list. In our implementation, we highlight the heroes results,
but transparently merge the elements of TList with the re-
maining elements of the time results, allowing the user to
gracefully fall back to the traditional chronological view if
not satisfied with the top k results.

We present three different algorithms to compute HList
and accordingly derive TList. These algorithms differ by
two main attributes: (1) the size of HList, that is, the num-
ber of heroes served, and (2) allowing or forbidding duplica-
tion between heroes and time results, when a highly relevant
result is also a most recent one.

1. Heroes-Dup selects exactly H heroes, according to their
relevance scores, with TList being formed by the top

(k−H) results of the Time list which may lead to du-
plication in the display window. Note that this algo-
rithm provides a user experience that will look similar
to the one offered by Inbox by Gmail, yet, as we do
not know whether the latter slots top relevant results
on top of time results or rather uses a more global
optimization approach, we cannot discuss additional
differences or similarities.

2. Heroes-Fixed behaves like Heroes-Dup yet forbids these
heroes from appearing in TList, thus eliminating du-
plicates in the top k results. We refer to them as “hid-
den heroes”, since in a traditional time-sorted view,
they might be hidden well below the fold.

3. Heroes-Iter picks a non-fixed number of h ≤ H heroes,
depending on the query, and avoids duplication in the
display window. This algorithm works iteratively, in-
creasing at each step the average relevance score of the
messages in the display window, as described in detail
below.

Our goal is to maximize user’s satisfaction, which is eval-
uated by the two following measures: Success@k, where a
user is considered satisfied if the last message she clicks on
belongs to the top k results, and MRR, where user satisfac-
tion is considered higher if the rank of the clicked message
is lower, with the minimal rank being 1 for the top result.
We compare the hero algorithms, using these two measures,
to the traditional Time algorithm.

Algorithm 1 Heroes-Iter

1: Input
2: k - window size
3: H < k - maximum number of hidden heroes to select
4: Rt = {t1, . . . , tn} – Time message list
5: Output
6: < TList,HList > - two message lists s.t. |TList|+ |HList| = k
7: Init
8: TList = {ti ∈ Rt|1 ≤ i ≤ k}
9: HList = ∅, h = 0
10: while h < H do
11: mh = argmaxm∈Rt−(TList∪HList) Rel(m)

12: if Rel(mh) > Rel(TList[k − h]) then
13: . Hero found
14: HList← HList ∪ {mh}
15: TList← TList− {TList[k − h]}
16: h← h + 1
17: else
18: break
19: return HList

Algorithm 1 presents the Heroes-Iter algorithm for iden-
tifying the complementary (short) list of hero messages to
be presented in addition to the Time list, while adhering
to a total of k results for both lists. The maximum num-
ber of heroes to be selected is limited by H < k. We begin
with the initial list of the top-k results from the Time list.
At each step our algorithm identifies the message with the
maximal relevance score, mh, among the results that are not
currently presented. If the relevance score of mh is higher
than the relevance score of mt, the last result in the cur-
rent time-based ranked list, then it is is added to the hero
list, while mt is taken out from the time list. The stopping
condition is met if we reach H heroes, or if mh is lower or
equal to mt, i.e., the candidate hero, if added, would replace
a higher scored message in the top k results and thus might

Figure 2: Example outputs of Time, Heroes-Iter ,
Heroes-Fixed and Heroes-Dup for a given query.The
numbers in the cells represent the relevance scores of
each message, while their brightness represent their
recency: the fresher a message, the brighter the cell.

hurt precision. We denote the relevance score of result m by
Rel(m).

Note that the Heroes-Iter algorithm preserves three in-
variants:

1. The sum of the sizes of the two lists remains k, which cor-
responds to the top k results to be shown to the searcher.
The Heroes-Iter algorithm keeps this invariant as it is ini-
tiated with k items and any addition of a hero message
to HList is followed by the removal of the last message
from TList.

2. There are no duplicate messages across the two lists, since
newly added hero messages are always selected from non
presented results. Note that a message pushed out from
TList can return as a hero in a later stage of the algo-
rithm.

3. The average relevance score of messages in the union of
the two lists is monotonically increasing, since, at any
stage we replace a lower-scored message with a higher-
scored message.

Note that Heroes-Iter is conservative in its selection pro-
cess, as it stops when the selection criterion fails. Based on
our analysis, only 1-2 heroes will be typically selected per
query. Moreover, it does not guarantee that the average rel-
evance score of the messages in both lists is maximal. The
Heroes-Fixed algorithm also preserves all invariants men-
tioned above. Additionally, in contrast to Heroes-Iter , it
maximizes the average relevance score of the messages in
the presented window, under the constraint of presenting
k−H messages ranked by time, hence it is expected to out-
perform Heroes-Iter according to the Success@k evaluation
criterion. However, it always selects H heroes per query,
an undesirable solution for queries that are already satisfied
with the Time list, and when selected heroes have a low
relevance score.

Figure 2 depicts an example corresponding to a query with
the results returned by each algorithm for k = 5 and H = 3.
The left side bar corresponds to time-based ranking6, fol-
6Note that two different messages can get the same relevance
score.

lowed by Heroes-Dup and Heroes-Fixed and the right bar
corresponds to Heroes-Iter . Heroes appear on top of the
time sorted list. As can be seen from the figure, Heroes-Dup
picks H = 3 most relevant messages as heroes, leading to a
duplication of the message with score 0.75 in the window.
The Heroes-Fixed algorithm picks H = 3 most relevant mes-
sages out of all the messages excluding the k −H = 2 most
recent ones (i.e. those with scores 0.75 and 0.55), since they
already appear in the window. Thus, it eliminates dupli-
cates in the display window and chooses the older but rel-
evant message with a score of 0.70 as the third hero result.
The Heroes-Iter algorithm picks the most relevant message
not currently in the window, scored 0.90, as the first hero,
since it is more relevant than the last message scored 0.60, in
the current window. The second most relevant message out-
side the updated window, scored 0.70, is tested against the
current last message, which scores 0.80. As the relevance
of the second potential hero is lower, it is not chosen and
the Heroes-Iter algorithm stops with only one hero result
selected.

5. OFFLINE EXPERIMENTS
We now present the results of an experiment on the same

dataset mentioned in Section 3. Each query is associated
with up to 100 retrieved messages, ranked by time, and the
message that was clicked by the searcher7. In all experi-
ments and for all the Hero algorithms, we use the relevance-
based scoring function presented in [3].

5.1 Overall Quality Evaluation
We evaluate the quality of the three hero algorithms, and

compare them with the time-based and relevance-based sorted
results according to the MRR and Success@k measures. Fig-
ure 3 shows the Success@k and MRR results for the heroes
algorithms and for Time and Rel (with k = 6, and with
H ∈ [0..k]).

The leftmost point of the curves corresponds to H = 0
(no heroes), where all algorithms return the top-k results of
the Time list. The rightmost point corresponds to H = k,
where both Heroes-Dup and Heroes-Fixed return k heroes,
which are the top k results of Rel , with no Time results,
while Heroes-Iter returns h ≤ k heroes with k−h time-based
ranked messages (h is determined per query). Typically, the
higher the number of heroes, the higher the average rele-
vance score in the display window, and consequently, the
higher the Success@k and MRR scores. This is consistent
with the finding that relevance ranking achieves better qual-
ity than time-based ranking [3].

The Heroes-Dup algorithm achieves the lowest Success@k
value, due to the duplication often occurring in the window.
Obviously, if the top relevant result is also recent, the same
result may appear twice in the window, both as a hero and
within the time results. In this case, the window is thus not
fully exploited and the success rate decreases. The potential
number of duplicates is maximal when the two lists have a
similar size. When H gets closer to the window size, k, the
success rate of Heroes-Dup increases as well, as it converges
to the relevance-ranked list.

In terms of MRR, Heroes-Dup is superior to Heroes-Iter
and Heroes-Fixed , with an MRR value that increases as the

7If more than one message was clicked, we consider the last
one.

Figure 3: MRR and Success@k of the hero algorithms and of the time and relevance ranking. Measures of
the hero algorithms are presented as a function of number of heroes (H). The maximal number of heroes is
set to be k for k = 6.

number of heroes increases. since it converges to the rele-
vance ranking view. The MRR of Heroes-Iter and Heroes-
Fixed decreases as the number of heroes increases (for Heroes-
Fixed , up to half the size of the window). This happens as
heroes are put on top and the most recent results (Time)
are pushed further down the list. Recall that when H < k,
the top k −H time results cannot be selected as heroes as
Heroes-Iter and Heroes-Fixed do not allow duplicates. For
Heroes-Fixed , the MRR increases for high values of H, as
when H gets closer to k, it converges to relevance ranking.
In addition, the Success@k shows better results for the hero
algorithms than for Rel at high H values according to Suc-
cess@k.

Comparing the results for the two evaluation measures, it
is clear that Heroes-Dup improves MRR, while the two other
algorithms, Heroes-Iter and Heroes-Fixed improve Success@k.
The Heroes-Dup algorithm simply puts the most relevant re-
sults on top, and therefore follows Rel which is optimized to
maximize MRR. On the other hand, the Heroes-Iter and
Heroes-Fixed algorithms, by avoiding duplicates, increase
the diversity of the messages, and the average relevance score
in the window, thus optimizing Success@k.

MRR is hurt by Heroes-Iter and Heroes-Fixed when heroes
are added to the window, since for many queries the most
recent results, which are pushed down, and are not dupli-
cated in the hero list, are very likely to contain the clicked
result (see Table 1). In addition, a hero can often be se-
lected from a very low rank according to Time, hence it was
neither exposed nor clicked by the searcher.

Interestingly, Heroes-Iter and Heroes-Fixed lead to their
best Success@k value when H approaches half the size of the
display window. In addition, when H is slightly above half of
the display window, the Heroes-Dup algorithm achieves an
almost optimal MRR. When comparing Heroes-Fixed with
Heroes-Iter for higher H values, Heroes-Iter ’s Success@k
rate is slightly lower than Heroes-Fixed , the optimal algo-
rithm for this measure, possibly due to the lower number
of heroes it selects. However, for almost all values of H,
Heroes-Iter is superior to Heroes-Fixed with respect to the
MRR measure (apart from H = 6, where Heroes-Fixed fills
the window with the top k relevant messages).

It is also interesting to analyze the relationship between
Table 1, and Figure 3. Time, with no heroes, is of high
quality for about 71% of the queries, for k = 6 (See Fig-

ure 3, when H = 0). The results definitely show that when
replacing some of the results in the window with heroes,
we increase this portion of success by bringing more clicked
messages to the window. However, by doing so we also hurt
some of the queries for which time-based ranking is supe-
rior to relevance-based ranking. Thus, while overall Heroes-
Fixed and Heroes-Iter achieve a nice increase in the aver-
age Success@k measure, there is still room for improvement
for specific “temporal sensitive” queries [10], for which time-
based ranking is preferred.

5.2 Query-Dependent Quality Evaluation
We evaluate the quality of the Heroes algorithms for dif-

ferent subsets of queries, and derive respective insights as
to the added values of our algorithms with respect to the
nature of the search queries. For all experiments presented
in this section, we use as maximal number of heroes H = 3
and k = 10.
Query Length. Figure 4 presents the quality of our algo-
rithms with respect to query length. The distribution of the
query length is presented in Table 2, where it can be seen
that more than 90% of the queries contain less than three
terms, and almost 70% of them contain one term only. Fig-
ures 4(a) and 4(b) give the Success@k and MRR scores of
the different algorithms as a function of the number of query
terms. For all algorithms, it can be seen that the longer the
query, the better the quality, which is good property that
validates the underlying relevance measure, REX2, indepen-
dently on how results are sorted. Paradoxically, users still
don’t trust the search mechanism and favor short queries.
This led us to investigate mail query suggestion mechanisms,
out of the scope of this paper, to encourage users to issues
longer, more specific, queries.

We consider the difference between the measures of the
different heroes algorithms and time ranking. With respect
to Success@k, it can be seen that the shorter the query (one
or two terms), the higher the added value of the heroes al-
gorithms as compared to the time-sorted view. For queries
of length one or two, Heroes-Iter and Heroes-Fixed achieve
about 4.5% increase, while they achieve only 2.3% increase
for queries of length three and more. With respect to MRR,
Heroes-Dup achieves an increase of 5.3% for single-term queries,
while achieving an increase of 2.7% for queries of length three
and more. Thus, the shorter (and less precise) the query, the

(a) Success@10

(b) MRR

Figure 4: Success@10 and MRR as a function of the
query length, for k = 10 and H = 3.

higher the added value of the heroes algorithms as compared
to the time-sorted view.

Query Length Queries Percentage
1 69.5%
2 21.1%
3+ 9.4%

Table 2: Fractions of queries wrt length

Number of Results. Figures 5(a) and 5(b) present the
Success@k and MRR measures of the algorithms as a func-
tion of the number of results matching the query. The distri-
bution of the queries with respect to their number of results
is presented in Table 3. For all algorithms, it can be seen
that the higher the number of results, the lower the quality,
as it becomes harder to identify the most relevant results.

The higher the number of results, the higher the added
value of the heroes algorithms with respect to time-based
ranking. With respect to MRR, Heroes-Dup is equal to Time
for up to 10 results, while it achieves an increase of more than
10% for more than 40 results. With respect to Success@k,
Heroes-Iter and Heroes-Fixed are equal to Time for up to
10 results, while they achieve an increase of more than 9%
for more than 40 results. As before, the advantage of the
heroes increases as the quality of Time decreases.

6. MANUAL EVALUATION
We conducted a manual evaluation, with the help of Ya-

hoo professional evaluators who were given directives on

(a) Success@10

(b) MRR

Figure 5: Success@10 and MRR as a function of the
number of results, for k = 10 and H = 3.

Results Number Queries Percentage
1-10 26.9%
11-40 24.8%
41-90 21.8%
91+ 26.5%

Table 3: Fractions of queries wrt number of results

searching their own mailboxes in the current and new set-
tings. Our evaluation included 16 trained professionals, who
were all asked to issue 20 queries on their personal mail-
boxes. Out of the 20 queries, 16 queries (80%) had to match
a given pattern, which specified the number of terms as well
as their type (e.g. <person name> <content word>). The
patterns were defined to cover the most prominent query
scenarios as found in our query log. The evaluators were
directed to formulate their own queries, in full freedom, as
long the latter matched one of the required patterns. Exam-
ples of query patterns are given in Table 4, while examples
of real evaluators’ queries instantiating these patterns with
associated intents are shown in the three left columns of
Figure 6. Additionally, 4 out of the 20 queries (20%) were
entirely up to the evaluators to devise. Moreover, they were
asked to add a description of the associated intent, in order
to describe the message they wish to re-find, before issuing
their queries.

Each query was run on four systems: one using the exist-
ing chronological ranking deployed in the Web mail system
we experiment with, and three novel systems, each using a

Figure 6: Editorial evaluation - examples of evaluators’ queries and ranking results.

Query Pattern Examples
<company name>
<person name> <content word>
<company name> <content word>
from:<person name> <content word>
<content word>
<content word> <content word>
<attachment name>
<company name> <content word> <content word>

Table 4: Manual evaluation - examples of query pat-
terns.

different version of the hero algorithm, namely Heroes-Iter ,
Heroes-Fixed , and Heroes-Dup. For this evaluation, we set
the maximum number of heroes, H, to 3, and the window
size, k, to 6. The values correspond to a mobile setting
where the window size is relatively small, as illustrated in
Figure 1.

For each system, the evaluators had to identify the rank
of the most relevant result, i.e. the message they wanted to
re-find when formulating their query. The rank of a message
is determined with respect to its position in the unified list
of both relevance-based ordered hero results on top, and the
time-based ordered recent results below. In addition they
were asked to judge other relevant results, if any. Each mes-
sage was labeled according to three relevance levels: most
relevant (assigned to at most one result), relevant, and non-
relevant. Examples of result assessments made by the eval-
uators for their own queries are presented in the right-side
columns of Figure 6.

Overall, 320 personal mail queries were collected for this
experiment, where each query is associated with top-6 mes-
sages, judged by the evaluator who submitted the query,
for each algorithm we experimented with. The ranking al-
gorithms were evaluated using both MRR and Success@k
measures, as before. Furthermore, the identification of the
relevance level of the judged results allowed us to compute
their NDCG@k (Normalized Discounted Cumulative Gain)
values. The latter was computed over the top-6 results, us-
ing three relevance scores 0, 1, 7 for non-relevant, relevant
and most relevant results, respectively. Table 5 summarizes
the results of the manual evaluation.

The table shows that the algorithms that avoid dupli-
cations, namely Heroes-Fixed and Heroes-Iter , outperform
Time and Heroes-Dup algorithms with respect to the Suc-
cess@6 measure, which complies with their goal of optimiz-
ing recall within the chosen window (with a slight benefit to
Heroes-Fixed that outperforms Time by 9.9%). However,
considering MRR and NDCG@6, there is a clear advantage
to Heroes-Dup, followed by the traditional Time-based rank-
ing model, where Heroes-Dup outperforms Time by 6.2%
and 5.7% for MRR and NDCG respectively. These results

are aligned with our offline evaluation results, where Heroes-
Fixed and Heroes-Iter (hero algorithms with no duplica-
tions) perform clearly better according to the Success@k
measure, and Heroes-Dup (hero algorithm with duplication)
performs better according to the MRR measure.

In addition to providing relevance judgments, the evalu-
ators were asked to rate several qualitative statements de-
scribing their overall experience with the hero model, com-
paring it to the traditional time based model. They were of-
fered a range of options, ranging from 1 (lowest satisfaction)
to 7 (highest satisfaction). Table 6 presents the evaluators’
feedback as well as the average ratings for each statement.
As can be seen, most answers were positive with respect to
the hero model. For example, the statement “With the hero
model, I felt that I could easily find the message I was looking
for” got an average ratings of 5.2 (out of 7).

Lastly, we asked evaluators which of the four systems they
liked the best. Out of the 16 participants, 11 (73%) indi-
cated that Heroes-Dup provided the best overall experience.
Their qualitative feedback thus demonstrates a clear pref-
erence of Heroes-Dup. As demonstrated in both the offline
and manual evaluation, Heroes-Dup outperforms the other
hero algorithms in terms of MRR. There seems to be a clear
agreement between expressed users’ satisfaction and MRR,
indicating that users prefer to see their most relevant results
at top positions, even if duplicated, rather than optimizing
the overall success rate.

7. ONLINE EVALUATION
Based on the promising results achieved in our offline and

manual evaluations, Heroes-Dup was launched in both Ya-
hoo enterprise mail and part of Yahoo Web mail. Figure 7
shows an example of the integration of Heroes-Dup in Yahoo
Mail, where the relevant results are older than the top of the
sorted-by-time list and do not appear as top results in the
traditional time-only view.

We compared Heroes-Dup with the current time-based
ranking in both enterprise and Web mail settings, each hav-
ing their own characteristics, [3]. Our online evaluation is
based on a sample of 50K queries originating from general
Web mail users and 180K queries issued by Yahoo employ-
ees in our enterprise environment. In both cases, half of the
queries were served the traditional time sorted results, while
the other half were served a hero-based treatment. Note that
given that this experiment was conducted on live traffic, we
had to chose a single new treatment and elected to pick the
one that did best in our manual evaluation, namely Heroes-
Dup.

Table 7 summarizes the results of the online evaluation,
considering both MRR and Success@6 measures. As can be
seen, both measures achieve a significant increase, where the

Time Heroes-Fixed Heroes-Iter Heroes-Dup
Success@6 0.82 0.90 (+9.9%)* 0.89 (+9.2%)* 0.86 (+5.4%)*

MRR 0.65 0.59 (-8.9%) 0.61 (-6.1%) 0.69 (+6.2%)*
NDCG@6 0.73 0.71 (-2.6%) 0.73 (-0.9%) 0.77 (+5.7%)*

Table 5: Manual evaluation: MRR, Success@6 and NDCG@6 values of Time and hero algorithms. All gains
marked with (*) are statistically significant (two-tailed paired t-test, p < 0.05).

User Experience Feedback Avg
With the hero model, I felt that
the results were related to my query 4.87
With the hero model, I felt that
I could easily find the message I was looking for 5.20
I prefer the hero model way of looking at results 4.80

Table 6: User experience with the hero model com-
pared to the current time-based model

Figure 7: Integration of hero results (with H=3) in
Yahoo Mail. The heroes are presented in the “Top
results” section followed by “All results” section,
which corresponds to the traditional time-ordered
view of the results.

highest increase was achieved for the MRR measure, in align-
ment with the offline and manual evaluations for Heroes-
Dup. More specifically, we observed an increase of 18.1%
in MRR, in enterprise mail and of 12% in Web mail. One
possible interpretation for this difference could be that enter-
prise users, especially in a Web company, are more trained
at expressing discriminating queries.

8. CONCLUSIONS
In this paper, we argued that exclusively showing sorted-

by-time results in mail search is somehow an anachronism.
We described three algorithms that promote relevant “hero”
results on top of time-ranked results, and demonstrated that
they outperform traditional time ranking. Using two mea-
sures of success, MRR and Success@k, we discovered that
our simpler algorithm with duplicates, Heroes-Dup, achieves
a higher MRR and a lower Success@k score, while the two
other algorithms achieve a lower MRR but higher Success@k
scores. In addition, while intuitively we would have antici-
pated that duplicate results would annoy mail search users,
a qualitative evaluation conducted by professional evalua-

Corporate mail
Time Heroes-Dup

MRR 0.239 0.282 (+18.1%)
Success@6 0.591 0.638 (+8.4%)

Web mail
Time Heroes-Dup

MRR 0.243 0.272 (+12%)
Success@6 0.602 0.624 (+3.8%)

Table 7: MRR and Success@6 of Time and Heroes-
Dup algorithms measured over Yahoo Corporate
and Web mail.

tors clearly favored Heroes-Dup. This leads us to believe
that in mail search, MRR is the better measure of success,
and users can tolerate duplication as long as they find their
result in the top ranks. Based on these findings, our Heroes-
Dup algorithm has been fully launched in Yahoo enterprise
mail and part of Yahoo Web mail. While top results might
also appear now in other Web mail services, such as Inbox
by Gmail, this work is, to the best of our knowledge, the first
one that details associated algorithms, online experiments,
and demonstrate the value of hero results, with a significant
increase of 18.12% and 12% in MRR, for enterprise mail and
Web mail respectively.

Given the promising results we obtained, we hope that
more and more mail search engines will invest efforts in
improving results relevance so as to correct the user’s per-
ception of mail search being broken. We strongly believe
that once mail search can be trusted, users will issue longer
queries, ranking will keep improving and hopefully mail search
will start following the same path of success as Web search.

9. REFERENCES
[1] F. Abel, I. Celik, G.-J. Houben, and P. Siehndel.

Leveraging the semantics of tweets for adaptive
faceted search on twitter. In Proceedings of ISWC,
pages 1–17. Springer-Verlag, 2011.

[2] M. S. Bernstein, B. Suh, L. Hong, J. Chen, S. Kairam,
and E. H. Chi. Eddi: Interactive topic-based browsing
of social status streams. In Proceedings of UIST, pages
303–312. ACM, 2010.

[3] D. Carmel, G. Halawi, L. Lewin-Eytan, Y. Maarek,
and A. Raviv. Rank by time or by relevance?
revisiting email search. In Proceedings of CIKM, pages
283–292, 2015.

[4] D. Carmel, L. Lewin-Eytan, A. Libov, Y. Maarek, and
A. Raviv. The demographics of mail search and their
application to query suggestion. In Proceedings of
WWW. ACM, April 2017.

[5] S. Cheng, A. Arvanitis, and V. Hristidis. How fresh do
you want your search results? In Proceedings of
CIKM, pages 1271–1280. ACM, 2013.

[6] E. Cutrell, S. T. Dumais, and J. Teevan. Searching to
eliminate personal information management.
Commun. ACM, 49(1):58–64, Jan. 2006.

[7] N. Dai, M. Shokouhi, and B. D. Davison. Learning to
rank for freshness and relevance. In Proceedings of
SIGIR, pages 95–104. ACM, 2011.

[8] W. Dakka, L. Gravano, and P. G. Ipeirotis. Answering
general time sensitive queries. In Proceedings of
CIKM, pages 1437–1438. ACM, 2008.

[9] D. Di Castro, Z. Karnin, L. Lewin-Eytan, and
Y. Maarek. You’ve got mail, and here is what you
could do with it!: Analyzing and predicting actions on
email messages. In Proceedings of WSDM, pages
307–316. ACM, 2016.

[10] A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai,
R. Zhang, K. Buchner, C. Liao, and F. Diaz. Towards
recency ranking in web search. In Proceedings of
WSDM, pages 11–20. ACM, 2010.

[11] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin,
and D. C. Robbins. Stuff I’ve seen: A system for

personal information retrieval and re-use. Proceedings
of SIGIR, pages 72–79, 2003.

[12] M. Efron and G. Golovchinsky. Estimation methods
for ranking recent information. In Proceedings of
SIGIR, pages 495–504. ACM, 2011.

[13] D. Elsweiler, M. Harvey, and M. Hacker.
Understanding re-finding behavior in naturalistic
email interaction logs. In Proceedings of SIGIR, pages
35–44. ACM, 2011.

[14] M. Grbovic, G. Halawi, Z. Karnin, and Y. Maarek.
How many folders do you really need? classifying
email into a handful of categories. In Proceedings of
CIKM, pages 869–878, 2014.

[15] R. Jones and F. Diaz. Temporal profiles of queries.
ACM Trans. Inf. Syst., 25(3), July 2007.

[16] X. Li and W. B. Croft. Time-based language models.
In Proceedings of CIKM, pages 469–475. ACM, 2003.

[17] K. Tao, F. Abel, C. Hauff, and G.-J. Houben.
Twinder: A search engine for twitter streams. In
Proceedings of ICWE, pages 153–168. Springer-Verlag,
2012.

