Hypergraph-partitioning-based remapping models for image-space-parallel direct volume rendering of unstructured grids

Publication
Jan 1, 2007
Abstract

Abstract:
In this work, image-space-parallel direct volume rendering (DVR) of unstructured grids is investigated for distributed-memory architectures. A hypergraph-partitioning-based model is proposed for the adaptive screen partitioning problem in this context. The proposed model aims to balance the rendering loads of processors while trying to minimize the amount of data replication. In the parallel DVR framework we adopted, each data primitive is statically owned by its home processor, which is responsible from replicating its primitives on other processors. Two appropriate remapping models are proposed by enhancing the above model for use within this framework. These two remapping models aim to minimize the total volume of communication in data replication while balancing the rendering loads of processors. Based on the proposed models, a parallel DVR algorithm is developed. The experiments conducted on a PC cluster show that the proposed remapping models achieve better speedup values compared to the remapping models previously suggested for image-space-parallel DVR.


Download:

Hypergraph.pdf
ACM COPYRIGHT NOTICE. Copyright © 2012 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

  • IEEE Transactions on Parallel and Distributed Systems

BibTeX