Clustering spatial networks for aggregate query processing: A hypergraph approach

Publication
Jan 1, 2008
Abstract

Abstract:
In spatial networks, clustering adjacent data to disk pages is highly likely to reduce the number of disk page accesses made by the aggregate network operations during query processing. For this purpose, different techniques based on the clustering graph model are proposed in the literature. In this work, we show that the state-of-the-art clustering graph model is not able to correctly capture the disk access costs of aggregate network operations. Moreover, we propose a novel clustering hypergraph model that correctly captures the disk access costs of these operations. The proposed model aims to minimize the total number of disk page accesses in aggregate network operations. Based on this model, we further propose two adaptive recursive bipartitioning schemes to reduce the number of allocated disk pages while trying to minimize the number of disk page accesses. We evaluate our clustering hypergraph model and recursive bipartitioning schemes on a wide range of road network datasets. The results of the conducted experiments show that the proposed model is quite effective in reducing the number of disk accesses incurred by the network operations.


Download:

Clustering.pdf
ACM COPYRIGHT NOTICE. Copyright © 2012 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

  • Information Systems

BibTeX