Care to Comment? Recommendations for Commenting on News Stories

Jan 1, 2012

Abstract: Many websites provide commenting facilities for users to express their opinions or sentiments with regards to content items, such as, videos, news stories, blog posts, etc. Previous studies have shown that user comments contain valuable information that can provide insight on Web documents and may be utilized for various tasks. This work presents a model that predicts, for a given user, suitable news stories for commenting. The model achieves encouraging results regarding the ability to connect users with stories they are likely to comment on. This provides grounds for personalized recommendations of stories to users who may want to take part in their discussion. We combine a content-based approach with a collaborative-filtering approach (utilizing users' co-commenting patterns) in a latent factor modeling framework. We experiment with several variations of the model's loss function in order to adjust it to the problem domain. We evaluate the results on two datasets and show that employing co-commenting patterns improves upon using content features alone, even with as few as two available comments per story. Finally, we try to incorporate available social network data into the model. Interestingly, the social data does not lead to substantial performance gains, suggesting that the value of social data for this task is quite negligible. Download: C2c.pdf ACM COPYRIGHT NOTICE. Copyright © 2012 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

  • WWW'12, Lyon, France