Mail

Understanding Within-Content Engagement through Pattern Analysis of Mouse Gestures

Publication
Sep 8, 2014
Abstract

The availability of large volumes of interaction data and scalable data mining techniques have made possible to study the online behaviour for millions of Web users. Part of the efforts have focused on understanding how users interact and engage with web content. However, the measurement of within-content engagement remains a difficult and unsolved task. This is because of the lack of standardised, well-validated methods for measuring engagement, especially in an online context. To address this gap, we perform a controlled user study where we observe how users respond to online news in the presence or lack of interest. We collect mouse tracking data, which are known to correlate with visual attention, and examine how cursor behaviour can inform user engagement measures. The proposed method does not use any pre-determined concepts to characterise the cursor patterns. We, rather, follow an unsupervised approach and use a large set of features engineered from our data to extract the cursor patterns. Our findings support the connection between gaze and cursor behaviour but also, and more importantly, reveal other dependencies, such as the correlation between cursor activity and experienced affect. Finally, we demonstrate the value of our method by predicting the outcome of online news reading experiences.

  • 23rd International Conference on Information and Knowledge Management (CIKM), Shanghai, China, November 3-7, 2014.
  • Conference/Workshop Paper

BibTeX