Search Retargeting using Directed Query Embeddings

May 18, 2015

Determining user audience for online ad campaigns is a critical problem to companies competing in online advertising space. One of the most popular strategies is search retargeting, which involves targeting users that issued search queries related to advertiser's core business, commonly specified by advertisers themselves. However, advertisers often fail to include many relevant queries, which results in suboptimal campaigns and negatively impacts revenue for both advertisers and publishers. To address this issue, we use recently proposed neural language models to learn low-dimensional, distributed query embeddings, which can be used to expand query lists with related queries through simple nearest neighbor searches in the embedding space. Experiments on real-world data set strongly suggest benefits of the approach.

  • International World Wide Web Conference (WWW)
  • Conference/Workshop Paper